Samantha A Meenach

Learn More
One of the current challenges in the systemic delivery of nanoparticles in cancer therapy applications is the lack of effective tumor localization. Iron oxide nanoparticles (IONPs) coated with crosslinked dextran were functionalized with the tumor-homing peptide CREKA, which binds to fibrinogen complexes in the extracellular matrix of tumors. This allows(More)
Targeted pulmonary delivery facilitates the direct application of bioactive materials to the lungs in a controlled manner and provides an exciting platform for targeting magnetic nanoparticles (MNPs) to the lungs. Iron oxide MNPs remotely heat in the presence of an alternating magnetic field (AMF) providing unique opportunities for therapeutic applications(More)
Hyperthermia, the heating of cancerous tissues to between 41 and 45 degrees Celsius, has been shown to improve the efficacy of cancer therapy when used in conjunction with irradiation and/or chemotherapy. Here a novel method for remotely administering heat is presented, which involves the heating of tumor tissue using hydrogel nanocomposites containing(More)
Hyperthermia, the heating of tissue from 41 to 45 °C, has been shown to improve the efficacy of cancer therapy when used in conjunction with irradiation and/or chemotherapy. In this work, hydrogel nanocomposites have been developed that can control the delivery of both heat and a chemotherapeutic agent (e.g. paclitaxel). The nanocomposites studied involve a(More)
Pulmonary arterial hypertension (PAH) is an incurable cardiovascular disease characterized by high blood pressure in the arteries leading from the heart to the lungs. Over two million people in the USA are diagnosed with PAH annually and the typical survival rate is only 3 years after diagnosis. Current treatments are insufficient because of limited(More)
Pulmonary antibiotic delivery is increasingly recommended as maintenance therapy for cystic fibrosis (CF) patients with chronic Pseudomonas aeruginosa infection. However, the abnormally thick and sticky mucus present in the respiratory tract of CF patients impairs efficient mucus penetration and limits the range of antibiotics for inhalation treatment. To(More)
Three-dimensional (3 D) cell culture platforms are increasingly being used in cancer research and drug development since they mimic avascular tumors in vitro. In this study, we focused on the development of a novel air-grown multicellular spheroid (MCS) model to mimic in vivo tumors for understanding lung cancer biology and improvement in the evaluation of(More)
Three-dimensional (3D) lung multicellular spheroids (MCS) in liquid-covered culture (LCC) and air-interface culture (AIC) conditions have both been developed for the evaluation of aerosol anticancer therapeutics in solution and aerosols, respectively. The MCS were formed by seeding lung cancer cells on top of collagen where they formed spheroids due to the(More)
Biocompatible, biodegradable polymers are commonly used as excipients to improve the drug delivery properties of aerosol formulations, in which acetalated dextran (Ac-Dex) exhibits promising potential as a polymer in various therapeutic applications. Despite this promise, there is no comprehensive study on the use of Ac-Dex as an excipient for dry powder(More)