Samaneh Reiszadeh Jahromi

Learn More
In this paper, we have demonstrated for the first time, the antioxidant and neuroprotective effects of Decalepis hamiltonii (Dh) root extract against paraquat (PQ)-induced oxidative stress and neurotoxicity in Drosophila melanogaster. Exposure of adult D. melanogaster (Oregon K) to PQ induced oxidative stress as evidenced by glutathione depletion, lipid(More)
Age-associated accumulation of oxidative damage linked to decline of antioxidant defense mechanism, leads to impairment of cognitive function in many organisms. These damages can pass through generations and affect the cognitive quality of progenies. In Drosophila, classical olfactory conditioning results in the formation of different types of memory.(More)
Oxidative stress is believed to be a major factor for the onset of Parkinson's disease (PD). In this study, we have investigated oxidative status in transgenic Drosophila model of PD. Our results revealed elevated levels of reactive oxygen species (ROS) and lipid peroxidation (LPO) in A30P and A53T α-synuclein PD model flies compared to control. We have(More)
Memory impairment during aging is believed to be a consequence of decline in neuronal function and increase in neurodegeneration. Accumulation of oxidative damage and reduction of antioxidant defense system play a key role in organismal aging and functional senescence. In our study, we examined the age-related memory impairment (AMI) in relation to(More)
The ε4 isoform of apolipoprotein E (ApoE4) that is involved in neuron-glial lipid metabolism has been demonstrated as the main genetic risk factor in late-onset of Alzheimer's disease. However, the mechanism underlying ApoE4-mediated neurodegeneration remains unclear. We created a transgenic model of neurodegenerative disorder by expressing ε3 and ε4(More)
Oxidative stress is one of the major etiological factors implicated in pathogenesis of neurodegenerative diseases. Since neurons are more sensitive to oxidative damage there is an increasing interest in developing novel antioxidant therapies, especially herbal preparations due to their safety profile and high efficiency. In this regard, the neuroprotective(More)
Overexpression of human α-synuclein gene in Drosophila can reduce lifespan, and we have performed lifespan assay for A30P and A53Tα-synuclein transgenic and control (elav-GAL4, UAS-A30P, UAS-A53T) flies. Our results showed reduced lifespan of transgenic flies compared to controls. We have also investigated behavioral responses, levels of reactive oxygen(More)
  • 1