Learn More
In this letter, we characterize the finite-time behavior on arbitrary undirected graphs. In particular, we derive distributed iterations that are a function of a linear operator on the underlying graph and show that any arbitrary initial condition can be forced to lie on a particular subspace in a finite time. This subspace can be chosen to have the same(More)
In this paper, we investigate asymptotic stability of linear time-varying systems with (sub-) stochastic system matrices. Motivated by distributed dynamic fusion over networks of mobile agents, we impose some mild regularity conditions on the elements of time-varying system matrices. We provide sufficient conditions under which the asymptotic stability of(More)
—In this paper, we develop a distributed algorithm to localize a network of robots moving arbitrarily in a bounded region. In the case of such mobile networks, the main challenge is that the robots may not be able to find nearby robots to implement a distributed algorithm. We address this issue by providing an opportunistic algorithm that only implements a(More)
In this paper, we consider a Linear Time-Varying (LTV) model to describe the dynamics of a leader-follower algorithms with mobile agents. We first develop regularity conditions on the LTV system matrices, according to a random motion of the agents and the underlying communication protocol. We then study the convergence of all agents to the state of the(More)
In this letter, we study the consensus-based leader-follower algorithm in mobile sensor networks, where the goal for the entire network is to converge to the state of a leader. We capture the mobility in the leader-follower algorithm by abstracting it as a Linear Time-Varying (LTV) system with random system matrices. In particular, a mobile node, moving(More)
In this paper, we discuss the problem of tracking the locations of an arbitrary number of agents moving in a bounded region. Assuming that each agent knows its motion precisely, and also its distances and angles to the nodes in its communication radius, we provide a geometric approach to continually update the distances and angles even when the agents move(More)
  • 1