Learn More
One goal of cell biology is to understand how cells adopt different shapes in response to varying environmental and cellular conditions. Achieving a comprehensive understanding of the relationship between cell shape and environment requires a systems-level understanding of the signalling networks that respond to external cues and regulate the cytoskeleton.(More)
Melanoma cells can adopt two functionally distinct forms, amoeboid and mesenchymal, which facilitates their ability to invade and colonize diverse environments during the metastatic process. Using quantitative imaging of single living tumor cells invading three-dimensional collagen matrices, in tandem with unsupervised computational analysis, we found that(More)
Data visualization is a fundamental aspect of science. In the context of microscopy-based studies, visualization typically involves presentation of the images themselves. However, data visualization is challenging when microscopy experiments entail imaging of millions of cells, and complex cellular phenotypes are quantified in a high-content manner. Most(More)
Today's educators are using mock trials and jury deliberations as a way to promote critical thinking and enhance communication skills. An English teacher at Tucson, Arizona's Cholla Magnet High School, incorporates mock trials and jury deliberations as a part of his class. The Center for the Management of Information, at the University of Arizona, developed(More)
The dynamics of signalling networks that couple environmental conditions with cellular behaviour can now be characterised in exquisite detail using live single-cell imaging experiments. Recent improvements in our abilities to introduce fluorescent sensors into cells, coupled with advances in pipelines for quantifying and extracting single-cell data, mean(More)
Summary Live imaging studies give unparalleled insight into dynamic single cell behaviours and fate decisions. However, the challenge of reliably tracking single cells over long periods of time limits both the throughput and ease with which such studies can be performed. Here, we present NucliTrack, a cross platform solution for automatically segmenting,(More)
Image-based cell profiling is a high-throughput strategy for the quantification of phenotypic differences among a variety of cell populations. It paves the way to studying biological systems on a large scale by using chemical and genetic perturbations. The general workflow for this technology involves image acquisition with high-throughput microscopy(More)
Summary: Live imaging studies give unparalleled insight into dynamic single cell behaviours and fate decisions. However, the challenge of reliably tracking single cells over long periods of time limits both the throughput and ease with which such studies can be performed. Here, we present NucliTrack, a cross platform solution for automatically segmenting,(More)
  • 1