Learn More
Organotypic culture of human primary bronchial epithelial cells is a useful in vitro system to study normal biological processes and lung disease mechanisms, to develop new therapies, and to assess the biological perturbations induced by environmental pollutants. Herein, we investigate whether the perturbations induced by cigarette smoke (CS) and observed(More)
Towards a systems toxicology-based risk assessment, we investigated molecular perturbations accompanying histopathological changes in a 28-day rat inhalation study combining transcriptomics with classical histopathology. We demonstrated reduced biological activity of a prototypic modified risk tobacco product (pMRTP) compared with the reference research(More)
A non-redundant set of 170 protein-protein interfaces of known structure was statistically analyzed for residue and secondary-structure compositions, pairing preferences and side-chain-backbone interaction frequencies. By focussing mainly on transient protein-protein interfaces, the results underline previous findings for protein-protein interfaces but also(More)
Biological networks with a structured syntax are a powerful way of representing biological information generated from high density data; however, they can become unwieldy to manage as their size and complexity increase. This article presents a crowd-verification approach for the visualization and expansion of biological networks. Web-based graphical(More)
With the wealth of publications and data available, powerful and transparent computational approaches are required to represent measured data and scientific knowledge in a computable and searchable format. We developed a set of biological network models, scripted in the Biological Expression Language, that reflect causal signaling pathways across a wide(More)
Capture and representation of scientific knowledge in a structured format are essential to improve the understanding of biological mechanisms involved in complex diseases. Biological knowledge and knowledge about standardized terminologies are difficult to capture from literature in a usable form. A semi-automated knowledge extraction workflow is presented(More)
Interpreting the rapidly increasing amount of experimental data requires the availability and representation of biological knowledge in a computable form. The Biological expression language (BEL) encodes the data in form of causal relationships, which describe the association between biological events. BEL can successfully be applied to large data and(More)
Success in extracting biological relationships is mainly dependent on the complexity of the task as well as the availability of high-quality training data. Here, we describe the new corpora in the systems biology modeling language BEL for training and testing biological relationship extraction systems that we prepared for the BioCreative V BEL track. BEL(More)
As protein-protein interactions are one of the basic mechanisms in most cellular processes, it is desirable to understand the molecular details of protein-protein contacts and ultimately be able to predict which proteins interact. Interface areas on a protein surface that are involved in protein interactions exhibit certain characteristics. Therefore,(More)
Smoking of combustible cigarettes has a major impact on human health. Using a systems toxicology approach in a model of chronic obstructive pulmonary disease (C57BL/6 mice), we assessed the health consequences in mice of an aerosol derived from a prototype modified risk tobacco product (pMRTP) as compared to conventional cigarettes. We investigated(More)