Salvy P. Russo

Learn More
We fit a new gold embedded atom method (EAM) potential using an improved force matching methodology which included fitting to high-temperature solid lattice constants and liquid densities. The new potential shows a good overall improvement in agreement to the experimental lattice constants, elastic constants, stacking fault energy, radial distribution(More)
Nitrogen dioxide (NO2) is a gas species that plays an important role in certain industrial, farming, and healthcare sectors. However, there are still significant challenges for NO2 sensing at low detection limits, especially in the presence of other interfering gases. The NO2 selectivity of current gas-sensing technologies is significantly traded-off with(More)
We demonstrate that the energy bandgap of layered, high-dielectric α-MoO(3) can be reduced to values viable for the fabrication of 2D electronic devices. This is achieved through embedding Coulomb charges within the high dielectric media, advantageously limiting charge scattering. As a result, devices with α-MoO(3) of ∼11 nm thickness and carrier mobilities(More)
Epitaxial circuitry offers a revolution in silicon technology, with components that can be fabricated on atomic scales. We perform the first ab initio calculation of atomically thin epitaxial nanowires in silicon, investigating the fundamental electronic properties of wires two P atoms thick, similar to those produced this year by Weber et al. For the first(More)
M. M. Y. A. Alsaif, D. D. Yao, Dr. J. Z. Ou, Prof. K. Kalantar-zadeh School of Electrical and Computer, Engineering RMIT University Melbourne , Victoria , Australia E-mail:;; Prof. K. Latham, Prof. S. P. Russo School of Applied Sciences RMIT University Melbourne , Victoria ,(More)
The enabling of scientific experiments that are embarrassingly parallel, long running and data-intensive into a cloud-based execution environment is a desirable, though complex undertaking for many researchers. The management of such virtual environments is cumbersome and not necessarily within the core skill set for scientists and engineers. We present(More)
Two-dimensional (2D) molybdenum oxides at their various stoichiometries are promising candidates for generating plasmon resonances in visible light range. Herein, we demonstrate plasmonic 2D molybdenum oxide flakes for gas sensing applications, in which hydrogen (H2) is selected as a model gas. The 2D molybdenum oxide flakes are obtained using a(More)
: The differences in energy between electronic bands due to valley splitting are of paramount importance in interpreting transport spectroscopy experiments on state-of-the-art quantum devices defined by scanning tunnelling microscope lithography. Using vasp, we develop a plane-wave density functional theory description of systems which is size limited due(More)