Salvatore Oddo

Learn More
The neuropathological correlates of Alzheimer's disease (AD) include amyloid-beta (Abeta) plaques and neurofibrillary tangles. To study the interaction between Abeta and tau and their effect on synaptic function, we derived a triple-transgenic model (3xTg-AD) harboring PS1(M146V), APP(Swe), and tau(P301L) transgenes. Rather than crossing independent lines,(More)
Amyloid-beta (Abeta) containing plaques and tau-laden neurofibrillary tangles are the defining neuropathological features of Alzheimer's disease (AD). To better mimic this neuropathology, we generated a novel triple transgenic model of AD (3xTg-AD) harboring three mutant genes: beta-amyloid precursor protein (betaAPPSwe), presenilin-1 (PS1M146V), and(More)
The primal role that the amyloid-beta (Abeta) peptide has in the development of Alzheimer's disease is now almost universally accepted. It is also well recognized that Abeta exists in multiple assembly states, which have different physiological or pathophysiological effects. Although the classical view is that Abeta is deposited extracellularly, emerging(More)
Progressive memory loss and cognitive dysfunction are the hallmark clinical features of Alzheimer's disease (AD). Identifying the molecular triggers for the onset of AD-related cognitive decline presently requires the use of suitable animal models, such as the 3xTg-AD mice, which develop both amyloid and tangle pathology. Here, we characterize the onset of(More)
Neurofibrillary tangles (NFTs) are composed of abnormal aggregates of the cytoskeletal protein tau. Together with amyloid beta (Abeta) plaques and neuronal and synaptic loss, NFTs constitute the primary pathological hallmarks of Alzheimer disease (AD). Recent evidence also suggests that caspases are activated early in the progression of AD and may play a(More)
Accumulation of amyloid-beta (Abeta) and Tau is an invariant feature of Alzheimer disease (AD). The upstream role of Abeta accumulation in the disease pathogenesis is widely accepted, and there is strong evidence showing that Abeta accumulation causes cognitive impairments. However, the molecular mechanisms linking Abeta to cognitive decline remain to be(More)
Amyloid-beta (Abeta) plaques and neurofibrillary tangles are the hallmark neuropathological lesions of Alzheimer's disease (AD). Using a triple transgenic model (3xTg-AD) that develops both lesions in AD-relevant brain regions, we determined the consequence of Abeta clearance on the development of tau pathology. Here we show that Abeta immunotherapy reduces(More)
We investigated the therapeutic efficacy of the selective M1 muscarinic agonist AF267B in the 3xTg-AD model of Alzheimer disease. AF267B administration rescued the cognitive deficits in a spatial task but not contextual fear conditioning. The effect of AF267B on cognition predicted the neuropathological outcome, as both the Abeta and tau pathologies were(More)
Alzheimer's disease (AD) is the most prevalent form of dementia among the elderly and is a complex disorder that involves altered proteolysis, oxidative stress and disruption of ion homeostasis. Animal models have proven useful in studying the impact of mutant AD-related genes on other cellular signaling pathways, such as Ca2+ signaling. Along these lines,(More)
Neuronal Ca2+ signaling through inositol triphosphate receptors (IP3R) and ryanodine receptors (RyRs) must be tightly regulated to maintain cell viability, both acutely and over a lifetime. Exaggerated intracellular Ca2+ levels have been associated with expression of Alzheimer's disease (AD) mutations in young mice, but little is known of Ca2+(More)