Salvatore Mirabella

  • Citations Per Year
Learn More
Plasmonic light trapping in thin film silicon solar cells is a promising route to achieve high efficiency with reduced volumes of semiconductor material. In this paper, we study the enhancement in the opto-electronic performance of thin a-Si:H solar cells due to the light scattering effects of plasmonic back reflectors (PBRs), composed of self-assembled(More)
The spectra of localized surface plasmon resonances (LSPRs) in self-assembled silver nanoparticles (NPs), prepared by solid-state dewetting of thin films, are discussed in terms of their structural properties. We summarize the dependences of size and shape of NPs on the fabrication conditions with a proposed structural-phase diagram. It was found that the(More)
Visible luminescence from ZnO nanorods (NRs) is attracting large scientific interest for light emission and sensing applications. We study visible luminescent defects in ZnO NRs as a function of post growth thermal treatments, and find four distinct visible deep level defect states (VDLSs): blue (2.52 eV), green (2.23 eV), orange (2.03 eV), and red (1.92(More)
Laser irradiation of ZnO:Al/Ag/ZnO:Al transparent contacts is investigated for segmentation purposes. The quality of the irradiated areas has been experimentally evaluated by separation resistance measurements, and the results are complemented with a thermal model used for numerical simulations of the laser process. The presence of the Ag interlayer plays(More)
The usage of semiconductor nanostructures is highly promising for boosting the energy conversion efficiency in photovoltaics technology, but still some of the underlying mechanisms are not well understood at the nanoscale length. Ge quantum dots (QDs) should have a larger absorption and a more efficient quantum confinement effect than Si ones, thus they are(More)
B diffusion measurements are used to probe the basic nature of self-interstitial point defects in Ge. We find two distinct self-interstitial forms--a simple one with low entropy and a complex one with entropy ∼30  k at the migration saddle point. The latter dominates diffusion at high temperature. We propose that its structure is similar to that of an(More)
We have elucidated the mechanism for B migration in the amorphous (a-) Si network. B diffusivity in a-Si is much higher than in crystalline Si; it is transient and increases with B concentration up to 2 x 10(20) B/cm(3). At higher density, B atoms in a-Si quickly precipitate. B diffusion is indirect, mediated by dangling bonds (DB) present in a-Si. The(More)
G. G. Scapellato,1 S. Boninelli,1 E. Napolitani,2 E. Bruno,1 A. J. Smith,3 S. Mirabella,1 M. Mastromatteo,2 D. De Salvador,2 R. Gwilliam,3 C. Spinella,4 A. Carnera,2 and F. Priolo1 1MATIS IMM-CNR and Dipartimento di Fisica e Astronomia, Università di Catania, via S. Sofia 64, 95123 Catania, Italy 2MATIS IMM-CNR and Dipartimento di Fisica, Università di(More)