Learn More
RATIONALE Pluripotent stem cells represent a powerful model system to study the early steps of cardiac specification for which the molecular control is largely unknown. The EGF-CFC (epidermal growth factor-Cripto/FRL-1/Cryptic) Cripto protein is essential for cardiac myogenesis in embryonic stem cells (ESCs). OBJECTIVE Here, we study the role of apelin(More)
Skeletal muscle regeneration mainly depends on satellite cells, a population of resident muscle stem cells. However, our understanding of the molecular mechanisms underlying satellite cell activation is still largely undefined. Here, we show that Cripto, a regulator of early embryogenesis, is a novel regulator of muscle regeneration and satellite cell(More)
AIMS Mammalian cardiomyogenesis occurs through a multistep process that requires a complex network of tightly regulated extracellular signals, which integrate with the genetic and epigenetic machinery to maintain, expand, and regulate the differentiation of cardiac progenitor cells. Pluripotent embryonic stem cells (ESCs) recapitulate many aspects of(More)
Skeletal muscle regeneration mainly depends on satellite cells, a population of resident muscle stem cells. Despite extensive studies, knowledge of the molecular mechanisms underlying the early events associated with satellite cell activation and myogenic commitment in muscle regeneration remains still incomplete. Cripto is a novel regulator of postnatal(More)
Rationale: Pluripotent stem cells represent a powerful model system to study the early steps of cardiac specification for which the molecular control is largely unknown. The EGF-CFC (epidermal growth factor–Cripto/FRL-1/ Cryptic) Cripto protein is essential for cardiac myogenesis in embryonic stem cells (ESCs). Objective: Here, we study the role of apelin(More)
  • 1