Salvatore Arcidiacono

  • Citations Per Year
Learn More
Using molecular dynamics simulations, we demonstrate and quantify thermophoretic motion of solid gold nanoparticles inside carbon nanotubes subject to wall temperature gradients ranging from 0.4 to 25 K/nm. For temperature gradients below 1 K/nm, we find that the particles move "on tracks" in a predictable fashion as they follow unique helical orbits(More)
Molecular dynamics (MD) simulations were performed in order to investigate the phenomenon of free oscillations of nanodroplets and the extent to which the continuum theory for such oscillations holds at nanoscales. The effect of temperature on these oscillations is also studied. The surface tension, a key property for the phenomenon of interest, was(More)
The structure and the solidification of gold nanoparticles in a carbon nanotube are investigated using molecular dynamics simulations. The simulations indicate that the predicted solidification temperature of the enclosed particle is lower than its bulk counterpart, but higher than that observed for clusters placed in vacuum. A comparison with a(More)
The phase transition of a simple liquid bounded between two parallel walls a few nanometers apart is investigated with molecular dynamics simulations. Vapor nucleation in a liquid confined in a microchannel of only a few nanometers in size cannot be achieved by increasing the temperature at the wall. Already small changes in temperature cause a large rise(More)
  • 1