Learn More
Protein aggregation correlates with the development of several debilitating human disorders of growing incidence, such as Alzheimer's and Parkinson's diseases. On the biotechnological side, protein production is often hampered by the accumulation of recombinant proteins into aggregates. Thus, the development of methods to anticipate the aggregation(More)
Protein-protein interactions are essential in most biological processes. Many proteomic approaches have succeeded in the identification of strong and obligatory interactions but the study of weak and transient protein-protein interactions is still a challenge. The aim of the present study was to test the ability of bimolecular fluorescence complementation(More)
Protein misfolding and deposition underlie an increasing number of debilitating human disorders. We have shown that model proteins unrelated to disease, such as the Src homology 3 (SH3) domain of the p58alpha subunit of bovine phosphatidyl-inositol-3'-kinase (PI3-SH3), can be converted in vitro into assemblies with structural and cytotoxic properties(More)
Human kallikrein 6 (protease M/zyme/neurosin) is a serine protease that has been suggested to be a serum biomarker for ovarian cancer and may also be involved in pathologies of the CNS. The precursor form of human kallikrein 6 (pro-hK6) was overexpressed in Pichia pastoris and found to be autoprocessed to an active but unstable mature enzyme that(More)
A common limitation of recombinant protein production in bacteria is the formation of insoluble protein aggregates known as inclusion bodies. The propensity of a given protein to aggregate is unpredictable, and the goal of a properly folded, soluble species has been pursued using four main approaches: modification of the protein sequence; increasing the(More)
The process by which small proteins fold to their native conformations has been intensively studied over the past few decades. The particular chemistry of disulfide-bond formation has facilitated the characterization of the oxidative folding of numerous small, disulfide-rich proteins with results that illustrate a high level of diversity in folding(More)
Alpha-synuclein (aSyn) misfolding and aggregation are pathological features common to several neurodegenerative diseases, including Parkinson's disease (PD). Mounting evidence suggests that aSyn can be secreted and transferred from cell to cell, participating in the propagation and spreading of pathological events. Rab11, a small GTPase, is an important(More)
BACKGROUND Many enzymes of industrial interest are not in the market since they are bio-produced as bacterial inclusion bodies, believed to be biologically inert aggregates of insoluble protein. RESULTS By using two structurally and functionally different model enzymes and two fluorescent proteins we show that physiological aggregation in bacteria might(More)
We present a high-throughput approach to study weak protein-protein interactions by coupling bimolecular fluorescent complementation (BiFC) to flow cytometry (FC). In BiFC, the interaction partners (bait and prey) are fused to two rationally designed fragments of a fluorescent protein, which recovers its function upon the binding of the interacting(More)
The role of amyloid β (Aβ) peptide in the onset and progression of Alzheimer's disease is linked to the presence of soluble Aβ species. Sulfated glycosaminoglycans (GAGs) promote Aβ fibrillogenesis and reduce the toxicity of the peptide in neuronal cell cultures, but a satisfactory rationale to explain these effects at the molecular level has not been(More)