Learn More
We report a calculation of the eld spectrum of a single-mode semiconductor laser with weak optical feedback and compare it with numerical simulations. We show that the change in the spectral properties induced by weak feedback can be obtained by a simpler model which introduces frequency dependent losses. The increase in the asymmetry of the side peaks of(More)
We demonstrate, experimentally and theoretically, excitable nanosecond optical pulses in optoelectronic integrated circuits operating at telecommunication wavelengths (1550 nm) comprising a nanoscale double barrier quantum well resonant tunneling diode (RTD) photo-detector driving a laser diode (LD). When perturbed either electrically or optically by an(More)
PURPOSE To determine the factors that lead to changes in intraocular pressure (IOP) measurements after laser-assisted in situ keratomileusis (LASIK) and their long-term stability. PATIENTS AND METHODS Five hundred twenty-two myopic eyes and 296 hyperopic eyes were enrolled in the study. Pneumotonometry was used to measure IOP once in the preoperative(More)
Cavity solitons are localized intensity peaks that can form in a homogeneous background of radiation. They are generated by shining laser pulses into optical cavities that contain a nonlinear medium driven by a coherent field (holding beam). The ability to switch cavity solitons on and off and to control their location and motion by applying laser pulses(More)
Experimental evidence of stochastic resonance in an excitable optical system is reported. We apply a sinusoidal forcing to the system and, for a finite external noise level, we find a frequency for which the excitable pulsing occurs periodically at the frequency imposed by the modulation. This resonant frequency matches the inverse of the average escape(More)
We analyze the phenomenon of anticipating synchronization of two excitable systems with unidirectional delayed coupling which are subject to the same external forcing. We demonstrate for different paradigms of excitable system that, due to the coupling, the excitability threshold for the slave system is always lower than that for the master. As a(More)
We introduce a new class of excitable systems with two-dimensional fast dynamics that includes inertia. A novel transition from excitability to relaxation oscillations is discovered where the usual Hopf bifurcation is followed by a cascade of period doubled and chaotic small excitable attractors and, as they grow, by a new type of canard explosion where a(More)
Thermo-optical pulsing in semiconductor amplifiers is experimentally shown to correspond to a very common excitable scenario (the van der Pol-Fitzhugh-Nagumo system). Self-sustained oscillations appear in the sequence predicted by this simple dynamical model as we change either the injection level or the bias current. Periodic modulation of these parameters(More)
We measure the temporal evolution of the intensity of an edge emitting semiconductor laser with delayed optical feedback for time spans ranging from 4.5 to 65 ns with a time resolution from 16 to 230 ps, respectively. Spectrally resolved streak camera measurements show that the fast pulsing of the total intensity is a consequence of the time delay and(More)
We demonstrate experimentally and theoretically the existence of canard orbits and excitable quasiharmonic limit cycles in the thermo-optical dynamics of semiconductor optical amplifiers. We also observe the phase locking of the noise-induced spikes to the small-amplitude Hopf quasiharmonic oscillations, recently predicted by Makarov, Nekorkin, and Velarde(More)