Salomé Antolin

Learn More
Olfactory transduction takes place in the cilia of olfactory receptor neurons (ORNs) (for review see Kleene, 2008). The process begins with the activation of an odorant receptor in the ciliary membrane, followed by synthesis of cAMP through activation of adenylyl cyclase (Lowe et al., 1989) via a G protein–coupled cascade. The ensuing increase in cAMP(More)
During the response of vertebrate olfactory receptor cells to stimulation, Ca(2+) enters the cilia via cyclic nucleotide-gated channels and is extruded by Na(+)-Ca(2+) exchange. The rise in Ca(2+) concentration opens a Ca(2+)-activated Cl(-) conductance which carries most of the inward receptor current. The dependence of Ca(2+) extrusion upon external Na(+)(More)
In vertebrate olfactory receptor neurons (ORNs), odorant-induced activation of the transduction cascade culminates in production of cyclic AMP, which opens cyclic nucleotide-gated channels in the ciliary membrane enabling Ca(2+) influx. The ensuing elevation of the intraciliary Ca(2+) concentration opens Ca(2+)-activated Cl(-) channels, which mediate an(More)
Electrical activity regulates the manner in which neurons mature and form connections to each other. However, it remains unclear whether increased single-cell activity is sufficient to alter the development of synaptic connectivity of that neuron or whether a global increase in circuit activity is necessary. To address this question, we genetically(More)
  • 1