Learn More
Formins, characterized by formin homology domains FH1 and FH2, are required to assemble certain F-actin structures including actin cables, stress fibers, and the contractile ring. FH1FH2 in a recombinant fragment from a yeast formin (Bni1p) nucleates actin filaments in vitro. It also binds to the filament barbed end where it appears to act as a "leaky"(More)
Nucleation of branched actin filaments by the Arp2/3 complex is a conserved process in eukaryotic cells, yet the source of unbranched actin filaments has remained obscure. In yeast, formins stimulate assembly of actin cables independently of Arp2/3. Here, the conserved core of formin homology domains 1 and 2 of Bni1p (Bni1pFH1FH2) was found to nucleate(More)
Polymorphonuclear leukocyte (PMN) chemotaxis has been examined under conditions which allow phase microscope observations of cells responding to controlled gradients of chemotactic factors. With this visual assay, PMNs can be seen to orient rapidly and reversibly to gradients of N-formylmethionyl peptides. The level of orientation depends upon the mean(More)
A fragment of the yeast formin Bni1 containing the FH1FH2 domains increases the rate of filament nucleation from pure G-actin [Pruyne et al. (2002) Science 297, 612-615]. To determine the mechanism of nucleation, we compared the G-actin dependence of Bni1FH1FH2-induced polymerization with theoretical models. The data best fit a model suggesting that(More)
The rate of filamentous actin (F-actin) depolymerization is proportional to the number of filaments depolarizing and changes in the rate are proportional to changes in filament number. To determine the number and length of actin filaments in polymorphonuclear leukocytes and the change in filament number and length that occurs during the increase in F-actin(More)
Formins are proteins best defined by the presence of the unique, highly conserved formin homology domain 2 (FH2). FH2 is necessary and sufficient to nucleate an actin filament in vitro. The FH2 domain also binds to the filament's barbed end, modulating its elongation and protecting it from capping proteins. FH2 itself appears to be a processive cap that(More)
Cell locomotion depends on polymerization and depolymerization of filamentous actin. Net polymerization at the cell front occurs fast enough to fill the extending lamellipod, and since total F-actin is essentially constant over time, depolymerization must equal polymerization. Indeed, the fastest moving cell types have the highest rates of depolymerization.(More)
Thymosin beta 4 (T beta 4), a 5-kD peptide which binds G-actin and inhibits its polymerization (Safer, D., M. Elzinga, and V. T. Nachmias. 1991. J. Biol. Chem. 266:4029-4032), appears to be the major G-actin sequestering protein in human PMNs. In support of a previous study by Hannappel, E., and M. Van Kampen (1987. J. Chromatography. 397:279-285), we find(More)
We have established a cell-free system to investigate pathways that regulate actin polymerization. Addition of GTP ␥ S to lysates of polymorphonuclear leukocytes (PMNs) or Dictyostelium discoideum amoeba induced formation of filamentous actin. The GTP ␥ S appeared to act via a small G-protein, since it was active in lysates of D. discoideum mutants missing(More)