Sally Beeson

Learn More
Component importance analysis is a key part of the system reliability quantification process. It enables the weakest areas of a system to be identified and indicates modifications, which will improve the system reliability. Although a wide range of importance measures have been developed, the majority of these measures are strictly for coherent system(More)
Importance analysis of noncoherent systems is limited, and is generally inaccurate because all measures of importance that have been developed are strictly for coherent analysis. This paper considers the probabilistic measure of component importance developed by Birnbaum (1969). An extension of this measure is proposed which enables noncoherent importance(More)
This paper considers a technique for calculating the unconditional failure intensity of any given non-coherent fault tree. Conventional Fault Tree Analysis (FTA) techniques involve the evaluation of lengthy series expansions and approximations are unavoidable even for moderate sized fault trees. The Binary Decision Diagram (BDD) technique overcomes some of(More)
Most applications that use waveguides are designed for a single frequency or single band of frequency, and thus the waveguide dimensions are chosen for single mode operation. In special cases where multiple frequencies across multiple bands are needed (i.e., probing the temporal response of decaying plasma using a cw source that is generated by a pulsed(More)
A 4-port S-band waveguide structure was designed and fabricated such that a signal of any amplitude (less than 1 MW) can be switched from a normally closed state, <0.5 dB insertion loss (IL), to an open state >30 dB IL by initiating plasma in a gas cell situated at the junction of this waveguide and one propagating a megawatt level magnetron pulse. The(More)
  • 1