Salim Mohamed Salim

Learn More
A strategy for dealing with turbulent flows over a two dimensional surface mounted obstacle using the wall y as guidance in selecting the appropriate grid configuration and corresponding turbulence models are investigated using Fluent. The CFD results were compared with experimental data from Zeidan’s Turbulent Shear Recovery behind Obstacles on Smooth and(More)
The performance of three different numerical techniques, i.e. RANS, URANS and LES are compared to determine their suitability in the prediction of urban airflow and pollutant dispersion process. The CFD codes are evaluated against wind tunnel experimental data, and it is observed that LES although more computationally expensive, produces the most accurate(More)
As a result of rapid urbanization in numerous cities around the world, the demand for transportation has increased rapidly, resulting in emission of high levels of exhaust pollutants into the atmosphere. This is a major cause of deterioration in the local air quality, with consequent escalating risk of adverse health conditions amongst urban inhabitants.(More)
Dispersion of airborne contaminants in indoor air was evaluated employing physical measurement, empirical models, and computer simulation methods. Field data collected from a tray of evaporating solvent in the laboratory were compared with computational fluid dynamics (CFD) simulations coupled with evaporation models. The results indicated that mathematical(More)
The paper shares the experience of executing enormous computations by Large Eddy Simulation (LES) for environmental studies, using the commercial Computational Fluid Dynamics (CFD) code FLUENT 6.3® on an Intel Xeon® quad-core workstation and Intel Core® dual-core PC. The computational performancein terms of iteration resource and time expenditure for both(More)
  • 1