Learn More
Rice (Oryza sativa), a major staple food, is usually milled to remove the oil-rich aleurone layer that turns rancid upon storage, especially in tropical areas. The remaining edible part of rice grains, the endosperm, lacks several essential nutrients, such as provitamin A. Thus, predominant rice consumption promotes vitamin A deficiency, a serious public(More)
We here report on the characterization of a novel third phytoene synthase gene (PSY) in rice (Oryza sativa), OsPSY3, and on the differences among all three PSY genes with respect to the tissue-specific expression and regulation upon various environmental stimuli. The two already known PSYs are under phytochrome control and involved in carotenoid(More)
Strigolactones, phytohormones with diverse signaling activities, have a common structure consisting of two lactones connected by an enol-ether bridge. Strigolactones derive from carotenoids via a pathway involving the carotenoid cleavage dioxygenases 7 and 8 (CCD7 and CCD8) and the iron-binding protein D27. We show that D27 is a β-carotene isomerase that(More)
BACKGROUND Since the creation of "Golden Rice", biofortification of plant-derived foods is a promising strategy for the alleviation of nutritional deficiencies. Potato is the most important staple food for mankind after the cereals rice, wheat and maize, and is extremely poor in provitamin A carotenoids. METHODOLOGY We transformed potato with a(More)
Strigolactones (SLs) are a class of phytohormones and rhizosphere signaling compounds with high structural diversity. Three enzymes, carotenoid isomerase DWARF27 and carotenoid cleavage dioxygenases CCD7 and CCD8, were previously shown to convert all-trans-β-carotene to carlactone (CL), the SL precursor. However, how CL is metabolized to SLs has remained(More)
Enzymes that produce retinal and related apocarotenoids constitute a sequence- and thus structure-related family, a member of which was analyzed by x-ray diffraction. This member is an oxygenase and contains an Fe2+-4-His arrangement at the axis of a seven-bladed beta-propeller chain fold covered by a dome formed by six large loops. The Fe2+ is accessible(More)
Cassava (Manihot esculenta) is an important staple crop, especially in the arid tropics. Because roots of commercial cassava cultivars contain a limited amount of provitamin A carotenoids, both conventional breeding and genetic modification are being applied to increase their production and accumulation to fight vitamin A deficiency disorders. We show here(More)
Carotenoid cleavage products--apocarotenoids--include biologically active compounds, such as hormones, pigments and volatiles. Their biosynthesis is initiated by the oxidative cleavage of C-C double bonds in carotenoid backbones, leading to aldehydes and/or ketones. This step is catalyzed by carotenoid oxygenases, which constitute an ubiquitous enzyme(More)
Vitamin A deficiency is a public health problem in a large number of countries. Biofortification of major staple crops (wheat [Triticum aestivum], rice [Oryza sativa], maize [Zea mays], and potato [Solanum tuberosum]) with β-carotene has the potential to alleviate this nutritional problem. Previously, we engineered transgenic "Golden" potato tubers(More)
A major constraint for incorporating new traits into cassava using biotechnology is the limited list of known/tested promoters that encourage the expression of transgenes in the cassava's starchy roots. Based on a previous report on the glutamic-acid-rich protein Pt2L4, indicating a preferential expression in roots, we cloned the corresponding gene(More)