Salam Khalifa

Learn More
We present an approach to Arabic automatic diacritization that integrates syntactic analysis with morphological tagging through improving the prediction of case and state features. Our best system increases the accuracy of word diacritization by 2.5% absolute on all words, and 5.2% absolute on nominals over a state-of-theart baseline. Similar increases are(More)
In this paper, we present YAMAMA, a multi-dialect Arabic morphological analyzer and disambiguator. Our system is almost five times faster than the state-of-the-art MADAMIRA system with a slightly lower quality. In addition to speed, YAMAMA outputs a rich representation which allows for a wider spectrum of use. In this regard, YAMAMA transcends other(More)
In this paper, we present CamelParser, a state-of-the-art system for Arabic syntactic dependency analysis aligned with contextually disambiguated morphological features. CamelParser uses a state-of-the-art morphological disambiguator and improves its results using syntactically driven features. The system offers a number of output formats that include basic(More)
  • 1