Sakthivel Muniyan

Learn More
Protein arginine methyltransferases (PRMTs) are proved to play vital roles in chromatin remodeling, RNA metabolism, and signal transduction. Aberrant regulation of PRMT activity is associated with various pathological states such as cancer and cardiovascular disorders. Development and application of small molecule PRMT inhibitors will provide new avenues(More)
Cdc25C is a cell cycle protein of the dual specificity phosphatase family essential for activating the cdk1/Cyclin B1 complex in cells entering into mitosis. Since altered cell cycle is a hallmark of human cancers, we investigated androgen regulation of Cdc25C protein in human prostate cancer (PCa) cells, including androgen-sensitive (AS) LNCaP C-33 cells(More)
p66Shc functions as a longevity protein in murine and exhibits oxidase activity in regulating diverse biological activities. In this study, we investigated the role of p66Shc protein in regulating ovarian cancer (OCa) cell proliferation. Among three cell lines examined, the slowest growing OVCAR-3 cells have the lowest level of p66Shc protein. Transient(More)
The inactivation of tumor suppressor genes (TSGs) plays a vital role in the progression of human cancers. Nevertheless, those ubiquitous TSGs have been shown with limited roles in various stages of diverse carcinogenesis. Investigation on identifying unique TSG, especially for early stage of carcinogenesis, is imperative. As such, the search for(More)
Human prostatic acid phosphatase (PAcP) is a 100 kDa glycoprotein composed of two subunits. Recent advances demonstrate that cellular PAcP (cPAcP) functions as a protein tyrosine phosphatase by dephosphorylating ErbB-2/Neu/HER-2 at the phosphotyrosine residues in prostate cancer (PCa) cells, which results in reduced tumorigenicity. Further, the interaction(More)
Steroid hormones exhibit diverse biological activities. Despite intensive studies on steroid function at the genomic level, their nongenomic actions remain an enigma. In this study, we investigated the role of reactive oxygen species (ROS) in androgen-stimulated prostate cancer (PCa) cell proliferation. In androgen-treated PCa cells, increased cell growth(More)
Prostate cancer (PCa) is the most commonly diagnosed solid tumor and the second leading cancer death in the United States, and also one of the major cancer-related deaths in Chinese. Androgen deprivation therapy (ADT) is the first line treatment for metastatic PCa. PCa ultimately relapses with subsequent ADT treatment failure and becomes castrate-resistant(More)
The establishment of docetaxel-based chemotherapeutic treatments has improved the survival of castration-resistant prostate cancer (CRPC) patients. However, most patients develop resistance supporting the development of therapy. The current study was undertaken to establish the therapeutic benefit to target hedgehog signaling cascade using GDC-0449 to(More)
Metastatic prostate cancer (mPCa) relapses after a short period of androgen deprivation therapy and becomes the castration-resistant prostate cancer (CR PCa); to which the treatment is limited. Hence, it is imperative to identify novel therapeutic agents towards this patient population. In the present study, antiproliferative activities of novel(More)
In the early 1980s, the antischistosomal aryl hydantoin Ro 13-3978 (AH01), a close structural analogue of the androgen receptor antagonist nilutamide, was discovered. Administration of 100 mg/kg oral doses of AH01 to mice infected with adult and juvenile Schistosoma mansoni produced 95% and 64% total worm burden reductions, confirming its high activity(More)