Sajesh P Thomas

Learn More
Four new 2-oxo-1,2-dihydrobenzo[h]quinoline-3-carbaldehyde N-substituted thiosemicarbazone ligands (H(2)-LR, where R = H, Me, Et or Ph) and their corresponding new cobalt(III) complexes have been synthesized and characterized. The structures of the complexes 2 and 3 were determined by single crystal X-ray diffraction analysis. The interactions of the new(More)
The validity of the newly proposed 'carbon bonding', an interaction where a carbon atom acts as an electrophilic site towards a variety of nucleophiles, has been investigated in the solid state. X-ray charge density analysis provides experimental evidence for this hitherto unexplored interaction and unravels its nature and strength.
We present an approach to understanding crystal packing via 'energy frameworks', that combines efficient calculation of accurate intermolecular interaction energies with a novel graphical representation of their magnitude. In this manner intriguing questions, such as why some crystals bend with an applied force while others break, and why one polymorph of a(More)
The first examples of organic alloys of two room temperature liquids, obtained and characterized via in situ cryo-crystallography, are presented. Thiophenol and selenophenol, which exhibit isostructurality and similar modes of S⋯S and Se⋯Se homo-chalcogen interactions along with weak and rare S–H⋯S and Se–H⋯Se hydrogen bonds, are shown to form solid(More)
Experimental charge density analysis combined with the quantum crystallographic technique of X-ray wavefunction refinement (XWR) provides quantitative insights into the intra- and intermolecular interactions formed by acetazolamide, a diuretic drug. Firstly, the analysis of charge density topology at the intermolecular level shows the presence of(More)
The polymorphs of (Z)-2-fluoro-N'-phenyl benzamidamide with multiple Z' produce quasi-isostructural supramolecular architectures, wherein C-H···F interaction plays a significant role. The energy framework analysis indicates 2D structural similarities in the interaction topologies of these crystalline forms. The results point to a unique class of(More)
Structural studies on the polymorphs of the organoselenium antioxidant ebselen and its derivative show the potential of organic selenium to form unusually short Se⋅⋅⋅O chalcogen bonds that lead to conserved supramolecular recognition units. Se⋅⋅⋅O interactions observed in these polymorphs are the shortest such chalcogen bonds known for organoselenium(More)
Bending in molecular crystals is typically associated with the anisotropy of intermolecular interactions. The intriguing observation is reported of plastic bending in dimethyl sulfone, which exhibits nearly isotropic crystal packing and interaction topology, defying the known structural models of bending crystals. The origin of the bending phenomenon has(More)
Crystal structures of polymorphs and solvatomorphs of the potential anxiolytic drug fenobam exhibit an exclusive preference for one of the two possible tautomeric structures. A novel methodology based on nonlinear optical response has been successfully employed to detect the presence of a polymorphic impurity in a mixture of polymorphs.
Weak intermolecular interactions observed in crystalline materials are often influenced or forced by stronger interactions such as classical hydrogen bonds. Room temperature liquids offer a scenario where such strong interactions are absent so that the role and nature of the weak interactions can be studied more reliably. In this context, we have analyzed(More)