Learn More
Quantitative susceptibility mapping (QSM) is a new technique for quantifying magnetic susceptibility. It has already found various applications in quantifying in vivo iron content, calcifications and changes in venous oxygen saturation. The accuracy of susceptibility mapping is dependent on several factors. In this review, we evaluate the entire process of(More)
Susceptibility-weighted imaging (SWI) is a method that uses the intrinsic nature of local magnetic fields to enhance image contrast in order to improve the visibility of various susceptibility sources and to facilitate diagnostic interpretation. It is also the precursor to the concept of the use of phase for quantitative susceptibility mapping (QSM).(More)
PURPOSE To evaluate fetal cerebral venous blood oxygenation, Yv, using principles of MR susceptometry. MATERIALS AND METHODS A cohort of 19 pregnant subjects, with a mean gestational age of 31.6 ± 4.7 weeks were imaged using a modified susceptibility-weighted imaging (SWI) sequence. Data quality was first assessed for feasibility of oxygen saturation(More)
To improve susceptibility quantification, a threshold-based k-space/image domain iterative approach that uses geometric information from the susceptibility map itself as a constraint to overcome the ill-posed nature of the inverse filter is introduced. Simulations were used to study the accuracy of the method and its robustness in the presence of noise. In(More)
Cerebral microbleeds (CMBs) are small brain hemorrhages caused by the break down or structural abnormalities of small vessels of the brain. Owing to the paramagnetic properties of blood degradation products, CMBs can be detected in vivo using susceptibility-weighted imaging (SWI). SWI can be used not only to detect iron changes and CMBs, but also to(More)
PURPOSE To demonstrate the mapping of structures with high susceptibility values, such as the sinuses, bones and teeth, using short echo times. METHODS Four in vivo datasets were collected with a gradient-echo sequence (TE1 = 2.5 ms, TE2 = 5 ms and TE3 = 7.5 ms). Complex division was performed to remove the phase offset term and generate the phase at TE =(More)
PURPOSE To present a fully flow-compensated multiecho gradient echo sequence that can be used for MR angiography (MRA), susceptibility weighted imaging (SWI), and quantitative susceptibility mapping (QSM) and to study the effects of flow acceleration and background field gradients on flow compensation. METHODS The quality of flow compensation was(More)
A quantitative estimate of cerebral blood oxygen saturation is of critical importance in the investigation of cerebrovascular disease. We aimed to measure the change in venous oxygen saturation (Yv) before and after the intake of the vaso-dynamic agents caffeine and acetazolamide with high spatial resolution using susceptibility mapping. Caffeine and(More)
Magnetic Resonance Imaging (MRI) is a widely used, non-invasive imaging technique that provides a means to reveal structural and functional information of different body tissues in detail. Susceptibility Weighted Imaging (SWI) is a field in MRI that utilizes the information from the magnetic susceptibility property of different tissues using the gradient(More)
PURPOSE To demonstrate a new approach for reducing background phase variations in the susceptibility weighted image (SWI)[1]. METHODS In order to perform this experiment, we acquired high resolution sagittal 3D SWI images of the left leg. Background phase variations were removed to significantly reduce the phase due to the geometry and improve the data(More)