Safieddin Safavi-Naeini

Learn More
—In this paper, a stair-planar phased array antenna system for mobile broadcast satellite reception in Ku-band will be introduced. The height of the antenna is only 6 cm and the system has two-dimensional electronic scanning capability. The design procedures of low profile high gain microstrip sub-array antennas, low noise amplifiers, hybrid analog phase(More)
—For the first time, we demonstrate the feasibility of realizing ultrawideband antennas through ink-jetting of conductive inks on commercially available paper sheets. The characterization of the conductive ink as well as of the electrical properties of the paper substrate are reported for frequencies up to 10 GHz. This letter is one step further toward the(More)
The paper presents the design of an integrated CMOS 5.5/2.4 GHz dual-band smart-antenna transceiver for WLAN 802.11a/b/g applications. The phase shifter in the transceiver provides a variable 0/spl deg/ to 360/spl deg/ RF phase shift to each signal path at both bands using a novel integrated phase shifting approach. The transceiver is a typical(More)
—Based on the deterministic Maxwellian framework, we investigate the ability of each of the dual fields (electric and magnetic) in carrying independent information in a multi-polarization MIMO system. We quantify the performance by using a well-defined power independent dimensionality (PID) metric. We present numerical results for 3 deterministic scenarios:(More)
—The purpose of this paper is to present a robust and fast beamforming algorithm for the low-cost mobile phased array antennas. The proposed beamforming algorithm uses a sequentially perturbation gradient estimation method to update the control voltages of the phase shifters, with the objective of maximizing the received power by the array. This algorithm(More)
—In this paper, a novel hybrid tracking method for mobile active phased-array antenna systems is developed. The proposed technique consists of a mechanical stabilization loop and a direction-of-arrival (DOA) estimation algorithm, which is based on electronic beamforming. Compared with other tracking methods, the proposed method requires only one low-cost(More)