Learn More
UNLABELLED Glicentin and glucagon-like peptide-1 (7-36) amide (GLP-1) are gut hormones released during digestion. Glicentin and GLP-1 slow down gastric emptying and glicentin can switch off the duodenojejunal fed motor pattern. The effect of glicentin on the motor activity of colon has never been reported in humans. Our aim was to determine if circular(More)
Opioid-induced hyperalgesia and tolerance severely impact the clinical efficacy of opiates as pain relievers in animals and humans. The molecular mechanisms underlying both phenomena are not well understood and their elucidation should benefit from the study of animal models and from the design of appropriate experimental protocols. We describe here a(More)
BACKGROUND Plasminogen activator inhibitor type 1 (PAI-1) is the main inhibitor of the fibrinolytic system and contributes to an increased risk of atherothrombosis in insulin-resistant obese patients. In adipose tissue, we have shown that PAI-1 is synthesized mainly in the visceral stromal compartment and is positively regulated by glucocorticoids. We have(More)
RF-amide neuropeptides, with their typical Arg-Phe-NH2 signature at their carboxyl C-termini, belong to a lineage of peptides that spans almost the entire life tree. Throughout evolution, RF-amide peptides and their receptors preserved fundamental roles in reproduction and feeding, both in Vertebrates and Invertebrates. The scope of this review is to(More)
Mammalian RF-amide peptides, which all share a conserved carboxyl-terminal Arg-Phe-NH2 sequence, constitute a family of five groups of neuropeptides that are encoded by five different genes. They act through five G-protein-coupled receptors and each group of peptide binds to and activates mostly one receptor: RF-amide related peptide group binds to NPFFR1,(More)
The quantity and activation state of adipose tissue macrophages (ATMs) impact the development of obesity-induced metabolic diseases. Appetite-controlling hormones play key roles in obesity; however, our understanding of their effects on ATMs is limited. Here, we have shown that human and mouse ATMs express NPFFR2, a receptor for the appetite-reducing(More)
  • 1