Learn More
How a long strand of genomic DNA is compacted into a mitotic chromosome remains one of the basic questions in biology. The nucleosome fibre, in which DNA is wrapped around core histones, has long been assumed to be folded into a 30-nm chromatin fibre and further hierarchical regular structures to form mitotic chromosomes, although the actual existence of(More)
Mitotic chromosomes are essential structures for the faithful transmission of replicated genomic DNA into two daughter cells during cell division. A long strand of DNA is wrapped around a core histone and forms a nucleosome. The nucleosome has long been assumed to be folded into 30-nm chromatin fibers. However, how the nucleosome or 30-nm chromatin fiber is(More)
Nuclear volume and the number of nuclear pore complexes (NPCs) on the nucleus almost double during interphase in dividing cells. How these events are coordinated with the cell cycle is poorly understood, particularly in mammalian cells. We report here, based on newly developed techniques for visualizing NPC formation, that cyclin-dependent kinases (Cdks),(More)
Genome information, which is three-dimensionally organized within cells as chromatin, is searched and read by various proteins for diverse cell functions. Although how the protein factors find their targets remains unclear, the dynamic and flexible nature of chromatin is likely crucial. Using a combined approach of fluorescence correlation spectroscopy,(More)
A long strand of DNA is wrapped around the core histone and forms a nucleosome. Although the nucleosome has long been assumed to be folded into 30-nm chromatin fibres, their structural details and how such fibres are organised into a nucleus or mitotic chromosome remain unclear. When we observed frozen hydrated (vitrified) human mitotic cells using(More)
How is a long strand of genomic DNA packaged into a mitotic chromosome or nucleus? The nucleosome fiber (beads-on-a-string), in which DNA is wrapped around core histones, has long been assumed to be folded into a 30-nm chromatin fiber, and a further helically folded larger fiber. However, when frozen hydrated human mitotic cells were observed using(More)
Genomic DNA is organized three dimensionally within cells as chromatin and is searched and read by various proteins by an unknown mechanism; this mediates diverse cell functions. Recently, several pieces of evidence, including our cryomicroscopy and synchrotron X-ray scattering analyses, have demonstrated that chromatin consists of irregularly folded(More)
In eukaryotic cells, the nucleus is a complex and sophisticated organelle containing genomic DNA and supports essential cellular activities. Its surface contains many nuclear pore complexes (NPCs), channels for macromolecular transport between the cytoplasm and nucleus. It has been observed that the nuclear volume and the number of NPCs almost doubles(More)
  • 1