Saeko Takada

Learn More
The outer dynein arm of Chlamydomonas flagella, when isolated under Mg(2+)-free conditions, tends to dissociate into an 11 to 12S particle (12S dynein) containing the gamma heavy chain and a 21S particle (called 18S dynein) containing the alpha and beta heavy chains. We show here that functional outer arms can be reconstituted by the addition of 12S and 18S(More)
The outer dynein arms of Chlamydomonas flagella are attached to a precise site on the outer doublet microtubules and repeat at a regular interval of 24 nm. This binding is mediated by the outer dynein arm docking complex (ODA-DC), which is composed of three protein subunits. In this study, antibodies against the 83- and 62-kD subunits (DC83 and DC62) of the(More)
In syncytial Drosophila embryos, damaged or incompletely replicated DNA triggers centrosome disruption in mitosis, leading to defects in spindle assembly and anaphase chromosome segregation. The damaged nuclei drop from the cortex and are not incorporated into the cells that form the embryo proper. A null mutation in the Drosophila checkpoint kinase 2 tumor(More)
Terminal deletions of Drosophila chromosomes can be stably protected from end-to-end fusion despite the absence of all telomere-associated sequences. The sequence-independent protection of these telomeres suggests that recognition of chromosome ends might contribute to the epigenetic protection of telomeres. In mammals, Ataxia Telangiectasia Mutated (ATM)(More)
A procedure was developed for isolating Chlamydomonas outer-arm dynein that can functionally combine with the axoneme of an outer-arm-missing mutant, oda1. Previous studies showed that the outer-arm dynein of this organism, containing three heavy chains (alpha, beta, gamma), dissociates upon extraction with a high-salt-concentration buffer solution into an(More)
A new allele of the Chlamydomonas oda4 flagellar mutant (oda4-s7) possessing abnormal outer dynein arms was isolated. Unlike the previously described oda4 axoneme lacking all three (alpha, beta, and gamma) outer-arm dynein heavy chains, the oda4-s7 axoneme contains the alpha and gamma heavy chains and a novel peptide with a molecular mass of approximately(More)
The outer dynein arm-docking complex (ODA-DC) is a microtubule-associated structure that targets the outer dynein arm to its binding site on the flagellar axoneme (Takada et al. 2002. Mol. Biol. Cell 13, 1015-1029). The ODA-DC of Chlamydomonas contains three proteins, referred to as DC1, DC2, and DC3. We here report the isolation and sequencing of genomic(More)
We have used an insertional mutagenesis/ gene tagging technique to generate new Chlamydomonas reinhardtii mutants that are defective in assembly of the uter ynein rm. Among 39 insertional oda mutants characterized, two are alleles of the previously uncloned ODA3 gene, one is an allele of the uncloned ODA10 gene, and one represents a novel ODA gene (termed(More)
To learn more about how dyneins are targeted to specific sites in the flagellum, we have investigated a factor necessary for binding of outer arm dynein to the axonemal microtubules of Chlamydomonas. This factor, termed the outer dynein arm-docking complex (ODA-DC), previously was shown to be missing from axonemes of the outer dynein armless mutants oda1(More)
A new allele of the Chlamydomonas oda4 flagellar mutant (oda4-s7) possessing abnormal outer dynein arms was isolated. Unlike the previously described oda4 axoneme lacking all three (a, /3, and 3") outer-arm dynein heavy chains, the oda4-s7 axoneme contains the c~ and 3' heavy chains and a novel peptide with a molecular mass of •160 kD. The peptide reacts(More)