Learn More
NeuN (neuronal nuclei) is a neuron-specific nuclear protein which is identified by immunoreactivity with a monoclonal antibody, anti-NeuN. Anti-NeuN has been used widely as a reliable tool to detect most postmitotic neuronal cell types in neuroscience, developmental biology, and stem cell research fields as well as diagnostic histopathology. To date,(More)
Two different mRNAs encoding two different nonmuscle myosin heavy chains (MHCs) of approximately 200 kD have been identified in chicken nonmuscle cells, in agreement with the results of Katsuragawa et al. (Katsuragawa, Y., M. Yanagisawa, A. Inoue, and T. Masaki. 1989. Eur. J. Biochem. 184:611-616). In this paper, we quantitate the content of mRNA encoding(More)
The complete amino acid sequence of a vertebrate nonmuscle myosin heavy chain-B isoform (MHC-B, 1976 amino acids, 229 kDa) has been deduced by using cDNA clones from chicken brain libraries. The chicken nonmuscle MHC-B shows overall similarity in primary structure to other MHCs in the areas contributing to the ATP-binding site and actin-binding site.(More)
Myosin heavy chains (MHCs) from rat aorta smooth muscle cells were analyzed prior to and after these cells were placed into cell culture using sodium dodecyl sulfate-5% polyacrylamide gels, immunoblots, and two-dimensional peptide maps of tryptic digests. Rat aorta smooth muscle cells prior to culture were found to contain two MHCs (mass = 204 and 200 kDa)(More)
Alternative premRNA splicing is a major mechanism to generate diversity of gene products. However, the biological roles of alternative splicing during development remain elusive. Here, we focus on a neuron-specific RNA-binding protein, Rbfox3, recently identified as the antigen of the widely used anti-NeuN antibody. siRNA-mediated loss-of-function studies(More)
Nonmuscle myosins (NMs) II-A and II-B are essential for embryonic mouse development, but their specific roles are not completely defined. Here we examine the isoforms and their domain specifically in vivo and in vitro by studying mice and cells in which nonmuscle myosin heavy chain (NMHC) II-A is genetically replaced by NMHC II-B or chimeric NMHC IIs that(More)
We generated mice harboring a single amino acid mutation in the motor domain of nonmuscle myosin heavy chain II-B (NMHC II-B). Homozygous mutant mice had an abnormal gait and difficulties in maintaining balance. Consistent with their motor defects, the mutant mice displayed an abnormal pattern of cerebellar foliation. Analysis of the brains of homozygous(More)
Treatment of human platelets with 162 nM 12-O-tetradecanoylphorbol-13-acetate (TPA) resulted in phosphorylation of a number of peptides, including myosin heavy chain and the 20-kDa myosin light chain. The site phosphorylated on the myosin heavy chain was localized by two-dimensional peptide mapping to a serine residue(s) in a single major tryptic(More)
The complete amino acid sequence of a vertebrate cellular myosin heavy chain (MHC; 1,959 amino acids, 226 kDa) has been deduced by using cDNA clones from a chicken intestinal epithelial cell library. RNA blot analysis of kidney, spleen, brain, liver, and intestinal epithelial cells as well as smooth muscle cells from the aorta and gizzard indicates the(More)
An intronic hexanucleotide UGCAUG has been shown to play a critical role in the regulation of tissue-specific alternative splicing of pre-mRNAs in a wide range of tissues. Vertebrate Fox-1 has been shown to bind to this element, in a highly sequence-specific manner, through its RNA recognition motif (RRM). In mammals, there are at least two Fox-1-related(More)