Sachiko Hori

Learn More
Many beneficial effects of probiotics have been reported; however, few have focussed on the effects of Lactobacillus, a probiotic, on the bioconversion of isoflavonoids. We hypothesized that Lactobacillus rhamnosus will modify the metabolism of isoflavone. In an in vitro incubation, L. rhamnosus JCM 2771 produced daidzein from daidzin along with genistein.(More)
This study examined the effects of xylitol on mouse intestinal microbiota and urinary isoflavonoids. Xylitol is classified as a sugar alcohol and used as a food additive. The intestinal microbiota seems to play an important role in isoflavone metabolism. Xylitol feeding appears to affect the gut microbiota. We hypothesized that dietary xylitol changes(More)
This study examined the effects of rice bran oil (RBO) on mouse intestinal microbiota and urinary isoflavonoids. Dietary RBO affects intestinal cholesterol absorption. Intestinal microbiota seem to play an important role in isoflavone metabolism. We hypothesized that dietary RBO changes the metabolism of isoflavonoids and intestinal microbiota in mice. Male(More)
Much attention has been focused on the biological effects of equol, a metabolite of daidzein produced by intestinal microbiota. However, little is known about the role of isoflavone metabolizing bacteria in the intestinal microbiota. Recently, we isolated a dihydrodaidzein (DHD)-producing Clostridium-like bacterium, strain TM-40, from human feces. We(More)
To investigate the relationships among fecal isoflavone metabolism, dietary habit and Body Mass Index (BMI), 15 healthy men and 15 healthy women were recruited and provided stool samples for analysis of ex vivo anaerobic incubation of fecal suspension with daidzein. A negative correlation was observed between BMI and the dihydrodaidzein (DHD) production in(More)
BACKGROUND Equol is a metabolite of daidzein that is produced by intestinal microbiota. The oestrogenic activity of equol is stronger than daidzein. Equol-producing bacteria are believed to play an important role in the gut. The rod-shaped and Gram-positive anaerobic equol-producing intestinal bacterium Slackia TM-30 was isolated from healthy human faeces(More)
This study examined the effects of cholesterol on mouse intestinal microflora and on isoflavonoids in the cecum and plasma. Dietary cholesterol affects bile acid metabolism and bile acids can influence the intestinal microorganisms. Intestinal microflora appear to play an important role in isoflavone metabolism. We hypothesized that dietary cholesterol(More)
The effects of Lactobacillus collinoides JCM1123T on plasma cholesterol levels, isoflavonoids in the caecum and faecal flora were assessed in adult mice. L. collinoides JCM1123T altered the equol production status in in vitro incubation of daidzein with faecal flora of mice. In in vivo investigation, mice were fed an AIN-93M purified diet for 13 days, and(More)
This study examined the effects of L-arabinose on mouse intestinal microbiota and urinary isoflavonoids. Male mice were randomly divided into two groups: those fed a 0.05% daidzein-2.5% L-arabinose diet (AR group) and those fed a 0.05% daidzein control diet (CO group) for 28 days. The amounts of daidzein detected in urine were significantly lower in the AR(More)
  • 1