Sacha A Malin

Learn More
Artemin, a neuronal survival factor in the glial cell line-derived neurotrophic factor family, binds the glycosylphosphatidylinositol-anchored protein GFRalpha3 and the receptor tyrosine kinase Ret. Expression of the GFRalpha3 receptor is primarily restricted to the peripheral nervous system and is found in a subpopulation of nociceptive sensory neurons of(More)
Nerve growth factor (NGF) has been implicated as an effector of inflammatory pain because it sensitizes primary afferents to noxious thermal, mechanical, and chemical [e.g., capsaicin, a transient receptor potential vanilloid receptor 1 (TRPV1) agonist] stimuli and because NGF levels increase during inflammation. Here, we report the ability of glial cell(More)
Previous studies have revealed the presence of four kinetically distinct voltage-gated K+ currents, I(Af), I(As), I(K), and I(SS), in rat superior cervical ganglion (SCG) neurons and demonstrated that I(K) and I(SS) are expressed in all cells, whereas I(Af) and I(As) are differentially distributed. Previous studies have also revealed the presence of(More)
The nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) families of growth factors regulate the sensitivity of sensory neurons. The ion channels transient receptor potential vanilloid 1 (TRPV1) and transient receptor potential channel, subfamily A, member 1 (TRPA1), are necessary for development of inflammatory hypersensitivity(More)
Electrophysiological and molecular studies have revealed considerable heterogeneity in voltage-gated K(+) currents and in the subunits that underlie these channels in mammalian neurons. At present, however, the relationship between native K(+) currents and cloned subunits is poorly understood. In the experiments here, a molecular genetic approach was(More)
Dissociated primary sensory neurons are commonly used to study growth factor–dependent cell survival, axon outgrowth, differentiation and basic mechanisms of sensory physiology and pain. Spinal or trigeminal sensory neurons can be collected from embryos, neonates or adults, treated with enzymes that degrade the extracellular matrix, triturated and grown in(More)
Recently, we identified four kinetically distinct voltage-gated K(+) currents, I(Af), I(As), I(K), and I(SS), in rat superior cervical ganglion (SCG) neurons and demonstrated that I(Af) and I(As) are differentially expressed in type I (I(Af), I(K), I(SS)), type II (I(Af), I(As), I(K), I(SS)), and type III (I(K), I(SS)) SCG cells. In addition, we reported(More)
Pain perception begins with the activation of primary sensory nociceptors. Over the past decade, flourishing research has revealed that members of the Transient Receptor Potential (TRP) ion channel family are fundamental molecules that detect noxious stimuli and transduce a diverse range of physical and chemical energy into action potentials in(More)
Voltage-gated K(+) channels are multimeric proteins, consisting of four pore-forming alpha-subunits alone or in association with accessory subunits. Recently, for example, it was shown that the accessory Kv channel interacting proteins form complexes with Kv4 alpha-subunits and modulate Kv4 channel activity. The experiments reported here demonstrate that(More)
BACKGROUND Previous studies have shown that the TRPV1 ion channel plays a critical role in the development of heat hyperalgesia after inflammation, as inflamed TRPV1-/- mice develop mechanical allodynia but fail to develop thermal hyperalgesia. In order to further investigate the role of TRPV1, we have used an ex vivo skin/nerve/DRG preparation to examine(More)