Sach Mukherjee

Learn More
Recent years have seen much interest in the study of systems characterized by multiple interacting components. A class of statistical models called graphical models, in which graphs are used to represent probabilistic relationships between variables, provides a framework for formal inference regarding such systems. In many settings, the object of inference(More)
The Gene Expression Profile Analysis Suite (GEPAS) has been running for more than four years. During this time it has evolved to keep pace with the new interests and trends in the still changing world of microarray data analysis. GEPAS has been designed to provide an intuitive although powerful web-based interface that offers diverse analysis options from(More)
MOTIVATION An important task in microarray data analysis is the selection of genes that are differentially expressed between different tissue samples, such as healthy and diseased. However, microarray data contain an enormous number of dimensions (genes) and very few samples (arrays), a mismatch which poses fundamental statistical problems for the selection(More)
It remains unclear whether causal, rather than merely correlational, relationships in molecular networks can be inferred in complex biological settings. Here we describe the HPN-DREAM network inference challenge, which focused on learning causal influences in signaling networks. We used phosphoprotein data from cancer cell lines as well as in silico data(More)
A great deal of recent research has focused on the problem of selecting differentially expressed genes from microarray data ('gene selection'). Recent theoretical work has shown that the effectiveness of a gene selection algorithm can be captured as a probability called 'selection accuracy'. Unfortunately, in practice, there tends to be relatively little(More)
Protein levels and function are poorly predicted by genomic and transcriptomic analysis of patient tumours. Therefore, direct study of the functional proteome has the potential to provide a wealth of information that complements and extends genomic, epigenomic and transcriptomic analysis in The Cancer Genome Atlas (TCGA) projects. Here we use reverse-phase(More)
A great deal of recent research has focused on the challenging task of selecting differentially expressed genes from microarray data ('gene selection'). Numerous gene selection algorithms have been proposed in the literature, but it is often unclear exactly how these algorithms respond to conditions like small sample-sizes or differing variances. Choosing(More)
MOTIVATION Network inference approaches are widely used to shed light on regulatory interplay between molecular players such as genes and proteins. Biochemical processes underlying networks of interest (e.g. gene regulatory or protein signalling networks) are generally nonlinear. In many settings, knowledge is available concerning relevant chemical(More)
A great deal of recent research has focused on the challenging task of selecting differentially expressed genes from microarray data ("gene selection"). Numerous gene selection algorithms have been proposed in the literature, but it is often unclear exactly how these algorithms respond to conditions like small sample sizes or differing variances. Choosing(More)
Abstract. This paper considers the problem of estimating the structure of multiple related directed acyclic graph (DAG) models. Building on recent developments in exact estimation of DAGs using integer linear programming (ILP), we present an ILP approach for joint estimation over multiple DAGs, that does not require that the vertices in each DAG share a(More)