Learn More
Recent years have seen much interest in the study of systems characterized by multiple interacting components. A class of statistical models called graphical models, in which graphs are used to represent probabilistic relationships between variables, provides a framework for formal inference regarding such systems. In many settings, the object of inference(More)
The Gene Expression Profile Analysis Suite (GEPAS) has been running for more than four years. During this time it has evolved to keep pace with the new interests and trends in the still changing world of microarray data analysis. GEPAS has been designed to provide an intuitive although powerful web-based interface that offers diverse analysis options from(More)
MOTIVATION Combinatorial effects, in which several variables jointly influence an output or response, play an important role in biological systems. In many settings, Boolean functions provide a natural way to describe such influences. However, biochemical data using which we may wish to characterize such influences are usually subject to much variability.(More)
Most governments try to discourage their citizens from taking extreme risks with their health and lives. Yet, for reasons not understood, many people continue to do so. We suggest a new approach to this longstanding question. First, we show that expected-utility theory predicts that 'happier' people will be less attracted to risky behaviors. Second, using(More)
It remains unclear whether causal, rather than merely correlational, relationships in molecular networks can be inferred in complex biological settings. Here we describe the HPN-DREAM network inference challenge, which focused on learning causal influences in signaling networks. We used phosphoprotein data from cancer cell lines as well as in silico data(More)
Protein levels and function are poorly predicted by genomic and transcriptomic analysis of patient tumours. Therefore, direct study of the functional proteome has the potential to provide a wealth of information that complements and extends genomic, epigenomic and transcriptomic analysis in The Cancer Genome Atlas (TCGA) projects. Here we use reverse-phase(More)
MOTIVATION Identifying regulatory modules is an important task in the exploratory analysis of gene expression time series data. Clustering algorithms are often used for this purpose. However, gene regulatory events may induce complex temporal features in a gene expression profile, including time delays, inversions and transient correlations, which are not(More)
MOTIVATION Protein signaling networks play a key role in cellular function, and their dysregulation is central to many diseases, including cancer. To shed light on signaling network topology in specific contexts, such as cancer, requires interrogation of multiple proteins through time and statistical approaches to make inferences regarding network(More)
MOTIVATION An important task in microarray data analysis is the selection of genes that are differentially expressed between different tissue samples, such as healthy and diseased. However, microarray data contain an enormous number of dimensions (genes) and very few samples (arrays), a mismatch which poses fundamental statistical problems for the selection(More)