Sabyasachi Ganguli

Learn More
The establishment of covalent junctions between carbon nanotubes (CNTs) and the modification of their straight tubular morphology are two strategies needed to successfully synthesize nanotube-based three-dimensional (3D) frameworks exhibiting superior material properties. Engineering such 3D structures in scalable synthetic processes still remains a(More)
The creation of three-dimensionally engineered nanoporous architectures via covalently interconnected nanoscale building blocks remains one of the fundamental challenges in nanotechnology. Here we report the synthesis of ordered, stacked macroscopic three-dimensional (3D) solid scaffolds of graphene oxide (GO) fabricated via chemical cross-linking of(More)
Thermal management in polymeric composite materials has become increasingly critical in the air-vehicle industry because of the increasing thermal load in small-scale composite devices extensively used in electronics and aerospace systems. The thermal transport phenomenon in these small-scale heterogeneous systems is essentially controlled by the interface(More)
We have demonstrated that the infiltration of temperature-responsive polymers (e.g., PNIPAAm) into vertically-aligned carbon nanotube forests created synergetic effects, which provided the basis for the development of smart nanocomposite films with temperature-induced self-cleaning and/or controlled release capabilities.
Conventional adhesives show a decrease in the adhesion force with increasing temperature due to thermally induced viscoelastic thinning and/or structural decomposition. Here, we report the counter-intuitive behaviour of carbon nanotube (CNT) dry adhesives that show a temperature-enhanced adhesion strength by over six-fold up to 143 N cm-2 (4 mm × 4 mm),(More)
The through-thickness thermal conductivity in conventional adhesive joints (of approximately 0.3 W/m-K) fails to meet the thermal load transfer requirement in numerous applications to enable lean manufacturing and improve system reliability to thermal load. Carbon nanotubes are known to possess extremely high thermal conductivity along the longitudinal(More)
This paper presents a numerical investigation for natural convection of air in a three dimensional inclined annulus enclosure. This study wills exam the effect of radius ratio of an annulus made from graphite/epoxy laminated composite material on heat transfer taking two types of optimization of effective thermal conductivity in consideration: minimization(More)