Learn More
Although central to many studies of phenotypic variation and disease susceptibility, characterizing the genetic architecture of complex traits has been unexpectedly difficult. For example, most of the susceptibility genes that contribute to highly heritable conditions such as obesity and type 2 diabetes (T2D) remain to be identified despite intensive study.(More)
Current treatments have largely failed to slow the rapidly increasing world-wide prevalence of obesity and its co-morbidities. Despite a strong genetic contribution to obesity (40-70%), only a small percentage of heritability is explained with current knowledge of monogenic abnormalities, common sequence variants and conventional modes of inheritance.(More)
BACKGROUND Development of viral-induced chronic myocarditis is thought to involve both environmental and genetic factors. However, to date, no susceptibility genes have been identified. METHODS AND RESULTS We sought to identify loci that confer susceptibility to viral-induced chronic myocarditis with the use of chromosome substitution strain mice that are(More)
AIMS Recent evidence suggests that transgenerational genetic effects contribute to phenotypic variation in complex traits. To test for the general occurrence of these effects and to estimate their strength, we took advantage of chromosome substitution strains (CSSs) of mice where the Y chromosome of the host strain has been replaced with the Y chromosome of(More)
Despite considerable effort, the identification of genes that regulate complex multigenic traits such as obesity has proven difficult with conventional methodologies. The use of a chromosome substitution strain-based mapping strategy based on deep congenic analysis overcame many of the difficulties associated with gene discovery and led to the finding that(More)
The genetic architecture of complex traits strongly influences the consequences of inherited mutations, genetic engineering, environmental and genetic perturbations, and natural and artificial selection. But because most studies are under-powered, the picture of complex traits is often incomplete. Chromosome substitution strains (CSSs) are a unique paradigm(More)
Metabolic diseases such as obesity and atherosclerosis result from complex interactions between environmental factors and genetic variants. A panel of chromosome substitution strains (CSSs) was developed to characterize genetic and dietary factors contributing to metabolic diseases and other biological traits and biomedical conditions. Our goal here was to(More)
BACKGROUND/OBJECTIVES Both genetic and dietary factors contribute to the metabolic syndrome (MetS) in humans and animal models. Characterizing their individual roles as well as relationships among these factors is critical for understanding MetS pathogenesis and developing effective therapies. By studying phenotypic responsiveness to high-risk versus(More)
  • 1