Sabrina Beatriz Cardillo

Learn More
The three genes that form the UGA regulon in Saccharomyces cerevisiae are responsible for the transport and degradation of γ-aminobutyric acid (GABA) in this organism. Despite the differences in the sequence of their promoters, these genes similarly respond to GABA stimuli. The expression of UGA1, UGA2 and UGA4 depends on GABA induction and nitrogen(More)
The Saccharomyces cerevisiae UGA4 gene encodes a permease capable of importing gamma-aminobutyric acid (GABA) and delta-aminolevulinic acid (ALA) into the cell. GABA-dependent induction of this permease requires at least two positive-acting proteins, the specific factor Uga3 and the pleiotropic factor Uga35/Dal81. UGA4 is subjected to a very complex(More)
Yeast cells are able to adapt their metabolism according to the quality of both carbon and nitrogen sources available in the environment. Saccharomyces cerevisiae UGA4 gene encodes a permease capable of transporting γ-aminobutyric acid (GABA) into the cells. Yeast uses this amino acid as a nitrogen source or as a carbon skeleton that enters the(More)
Partial surgical stenosis of the gut induces smooth muscle cell hypertrophy and hyperplasia in the loops upstream from the obstruction in a few days. In the present study we report a quantitative evaluation of these phenomena in the circular smooth muscle layer of the small intestine of the rat 7 days after a subtotal stenosis. In the loops upstream from(More)
Foot-and-mouth disease virus (FMDV) is the causative agent of a highly contagious disease and a major concern in animal health worldwide. We have previously reported the use of RNA transcripts mimicking structural domains in the non-coding regions of the FMDV RNA as potent type-I interferon (IFN) inducers showing antiviral effect in vivo, as well as their(More)
γ-Aminobutyric acid (GABA) transport and catabolism in Saccharomyces cerevisiae are subject to a complex transcriptional control that depends on the nutritional status of the cells. The expression of the genes that form the UGA regulon is inducible by GABA and sensitive to nitrogen catabolite repression (NCR). GABA induction of these genes is mediated by(More)
The Saccharomyces cerevisiae UGA4 gene, which encodes the gamma-aminobutyric acid (GABA) and delta-aminolaevulinic acid (ALA) permease, is well known to be regulated by the nitrogen source. Its expression levels are low in the presence of a rich nitrogen source but are higher when a poor nitrogen source is used. In addition, GABA can induce UGA4 expression(More)
  • 1