Learn More
Astrocytes in the brain form an intimately associated network with neurons. They respond to neuronal activity and synaptically released glutamate by raising intracellular calcium concentration ([Ca2+]i), which could represent the start of back-signalling to neurons. Here we show that coactivation of the AMPA/kainate and metabotropic glutamate receptors(More)
The relationship is investigated between superoxide levels in single cultured rat cerebellar granule neurons exposed continuously to glutamate in low KCl medium and the deregulation of cytoplasmic Ca2+. Cells that maintain a regulated cytoplasmic-free Ca2+ and mitochondrial polarization in the presence of glutamate show no increase in superoxide levels(More)
The pathologic activation of NMDA receptors by glutamate is a major contributor to neuronal cell death after stroke. Receptor activation causes a massive influx of calcium into the neuron that is accumulated by the mitochondria. The favored hypothesis is that the calcium loaded mitochondria generate reactive oxygen species that damage and ultimately killed(More)
Although glial cells have been traditionally viewed as supportive partners of neurons, studies of the last 20 years demonstrate that astrocytes possess functional receptors for neurotransmitters and other signaling molecules and respond to their stimulation via release of chemical transmitters (called gliotransmitters) such as glutamate, ATP, and d-serine.(More)
The mitochondrion has moved to the center stage in the drama of the life and death of the neuron. The mitochondrial membrane potential controls the ability of the organelle to generate ATP, generate reactive oxygen species and sequester Ca(2+) entering the cell. Each of these processes interact, and their deconvolution is far from trivial. The cultured(More)
In the central nervous system, astrocytes form an intimately connected network with neurons, and their processes closely enwrap synapses. The critical role of these cells in metabolic and trophic support to neurons, ion buffering and clearance of neurotransmitters is well established. However, recent accumulating evidence suggests that astrocytes are active(More)
The mechanisms of HIV-1 neurotoxicity remain still undefined although the induction of signalling events and a modest inhibition of glutamate uptake induced by the envelope glycoprotein, gp120, have called attention to astrocytes. Here we demonstrate that the levels at which the viral glycoprotein affects glutamate homeostasis of astrocyte cultures are at(More)