Sabine Senkel

Learn More
The transcription factor hepatocyte nuclear factor 1beta (HNF1beta) is a tissue-specific regulator that also plays an essential role in early development of vertebrates. In humans, four heterozygous mutations in the HNF1beta gene have been identified that lead to early onset of diabetes and severe primary renal defects. The degree and type of renal defects(More)
Hepatocyte nuclear factor 4 (HNF4) was first identified as a DNA binding activity in rat liver nuclear extracts. Protein purification had then led to the cDNA cloning of rat HNF4, which was found to be an orphan member of the nuclear receptor superfamily. Binding sites for this factor were identified in many tissue-specifically expressed genes, and the(More)
Hepatocyte nuclear factor 1beta (HNF1beta, TCF2) is a tissue-specific transcription factor whose mutation in humans leads to renal cysts, genital malformations, pancreas atrophy and maturity onset diabetes of the young (MODY5). Furthermore, HNF1beta overexpression has been observed in clear cell cancer of the ovary. To identify potential HNF1beta target(More)
Using the rat insulinoma cell line INS-1 we generated beta-cell clones that are most efficient for gene transfer, as they contain an FRT site for Flp recombinase-mediated, site-directed integration of a single copy transgene. Therefore, the gene-of-interest can be introduced by DNA transfection without the need to select individual cell clones.(More)
The transcription factor LFB1 (HNF1) was initially identified as a regulator of liver-specific gene expression in mammals. It interacts with the promoter element HP1, which is functionally conserved between mammals and amphibians, suggesting that a homologous factor, XLFB1, also exists in Xenopus laevis. To study the role of LFB1 in early development, we(More)
The use of Cre and FLP recombinases to analyze embryogenesis and organogenesis in Xenopus has not been applied so far. We report on the generation of transgenic Xenopus animals containing a Cre-activated reporter gene cassette expressing blue fluorescent protein that can be switched over to yellow fluorescent protein expression upon Cre-mediated(More)
Drosophila enhancer of rudimentary [e(r)] interacts genetically with the rudimentary gene, which encodes a protein possessing the first three enzymatic activities of the pyrimidine biosynthesis pathway. A regulatory or enzymatic activity of e(r) in pyrimidine biosynthesis and the cell cycle has been suggested, but nothing is known about its molecular(More)
The three distinct types of kidneys, pronephros, mesonephros and metanephros, develop consecutively in vertebrates. The earliest form of embryonic kidney, the pronephros, is derived from intermediate mesoderm and the first expressed genes localized in the pronephros anlage are the transcription factors osr1, osr2, hnf1b, lhx1 and pax8, here referred to as(More)
Heterozygous mutations of the tissue-specific transcription factor hepatocyte nuclear factor (HNF)1beta, cause maturity onset diabetes of the young (MODY5) and kidney anomalies including agenesis, hypoplasia, dysplasia and cysts. Because of these renal anomalies, HNF1beta is classified as a CAKUT (congenital anomalies of the kidney and urinary tract) gene.(More)
Dysfunction of hepatocyte nuclear factor 4α (HNF4α) has been linked to maturity onset diabetes of the young (MODY1), diabetes type II and possibly to renal cell carcinoma (RCC). Whereas diabetes causing mutations are well known, there are no HNF4A mutations found in RCC. Since so far analyses have been constricted to the promoter and open reading frame of(More)