Learn More
The vacuolar membrane is involved in solute uptake into and release from the vacuole, which is the largest plant organelle. In addition to inorganic ions and metabolites, large quantities of protons and sugars are shuttled across this membrane. Current models suggest that the proton gradient across the membrane drives the accumulation and/or release of(More)
Vacuoles perform a multitude of functions in plant cells, including the storage of amino acids and sugars. Tonoplast-localized transporters catalyze the import and release of these molecules. The mechanisms determining the targeting of these transporters to the tonoplast are largely unknown. Using the paralogous Arabidopsis thaliana inositol transporters(More)
Arabidopsis thaliana has seven genes for functionally active sucrose transporters. Together with sucrose transporters from other dicot and monocot plants, these proteins form four separate phylogenetic groups. Group-IV includes the Arabidopsis protein SUC4 (synonym SUT4) and related proteins from monocots and dicots. These Group-IV sucrose transporters were(More)
Plants represent an important source of molybdenum in the human diet. Recently, MOT1 has been identified as a transport protein responsible for molybdate import in Arabidopsis thaliana L.; however, the function of the homologous protein MOT2 has not been resolved. Interestingly, MOT2-GFP analysis indicated a vacuolar location of this carrier protein. By(More)
Arabidopsis thaliana INOSITOL TRANSPORTER1 (INT1) is a member of a small gene family with only three more genes (INT2 to INT4). INT2 and INT4 were shown to encode plasma membrane-localized transporters for different inositol epimers, and INT3 was characterized as a pseudogene. Here, we present the functional and physiological characterization of the INT1(More)
Four genes of the Arabidopsis (Arabidopsis thaliana) monosaccharide transporter-like superfamily share significant homology with transporter genes previously identified in the common ice plant (Mesembryanthemum crystallinum), a model system for studies on salt tolerance of higher plants. These ice plant transporters had been discussed as tonoplast proteins(More)
Of the four genes of the Arabidopsis (Arabidopsis thaliana) INOSITOL TRANSPORTER family (AtINT family) so far only AtINT4 has been described. Here we present the characterization of AtINT2 and AtINT3. cDNA sequencing revealed that the AtINT3 gene is incorrectly spliced and encodes a truncated protein of only 182 amino acids with four transmembrane helices.(More)
The cyclic polyol myo-inositol is a key molecule in many different metabolic pathways among all organisms; in addition, it is fundamental for osmotic balance in the mammalian brain. This review sums up inositol transporters from eukaryotic organisms, elucidating their vital role in regulating the intracellular distribution and uptake of inositol. They can(More)
Inositols are indispensable components of cellular signaling molecules, and impaired cytoplasmic inositol concentrations affect cellular development. Although most cells can synthesize inositol de novo, plasma membrane-localized inositol uptake systems are indispensable for normal development. Here, we present in-depth functional analyses of plasma(More)
Arsenic contamination of groundwater and soils threatens the health of tens of millions of people worldwide. Understanding the way in which arsenic is taken up by crops such as rice, which serve as a significant source of arsenic in the human diet, is therefore important. Membrane transport proteins that catalyse arsenic uptake by roots, and translocation(More)