Sabine Jurado

Learn More
Dicer is a key player in microRNA (miRNA) and RNA interference (RNAi) pathways, processing miRNA precursors and double-stranded RNA into ∼21-nt-long products ultimately triggering sequence-dependent gene silencing. Although processing of substrates in vertebrate cells occurs in the cytoplasm, there is growing evidence suggesting Dicer is also present and(More)
Developing B lymphocytes expressing defective or autoreactive pre-B or B cell receptors (BCRs) are eliminated by programmed cell death, but how the balance between death and survival signals is regulated to prevent immunodeficiency and autoimmunity remains incompletely understood. In this study, we show that absence of the essential ATM (ataxia(More)
The highly conserved DYNLL1 (LC8) protein was originally discovered as a light chain of the dynein motor complex, but is increasingly emerging as a sequence-specific regulator of protein dimerization with hundreds of targets and wide-ranging cellular functions. Despite its important roles, DYNLL1's own regulation remains poorly understood. Here we identify(More)
Zn²(+)-finger proteins comprise one of the largest protein superfamilies with diverse biological functions. The ATM substrate Chk2-interacting Zn²(+)-finger protein (ASCIZ; also known as ATMIN and ZNF822) was originally linked to functions in the DNA base damage response and has also been proposed to be an essential cofactor of the ATM kinase. Here we show(More)
The ATM substrate Chk2-interacting Zn(2+)-finger protein (ASCIZ, also known as ATMIN and ZNF822) has previously been reported to be important for the repair of methylating and oxidative DNA damage, and it has also been proposed to regulate the stability and DNA damage-independent activation of the ATM kinase. While the role of the protein in the regulation(More)
PAX5 is a tumor suppressor in B-ALL, while the role of PAX5 fusion proteins in B-ALL development is largely unknown. Here, we studied the function of PAX5-ETV6 and PAX5-FOXP1 in mice expressing these proteins from the Pax5 locus. Both proteins arrested B-lymphopoiesis at the pro-B to pre-B-cell transition and, contrary to their proposed dominant-negative(More)
How MYC promotes the development of cancer remains to be fully understood. Here, we report that the Zn(2+)-finger transcription factor ASCIZ (ATMIN, ZNF822) synergizes with MYC to activate the expression of dynein light chain (DYNLL1, LC8) in the murine Eμ-Myc model of lymphoma. Deletion of Asciz or Dynll1 prevented the abnormal expansion of pre-B cells in(More)
  • 1