Sabine Hagemann

Learn More
In humans, adipose tissue is distributed in subcutaneous abdominal and subcutaneous gluteal depots that comprise a variety of functional differences. Whereas energy storage in gluteal adipose tissue has been shown to mediate a protective effect, an increase of abdominal adipose tissue is associated with metabolic disorders. However, the molecular basis of(More)
The cytosine analogues azacytidine and decitabine are currently being developed as drugs for epigenetic cancer therapy. Although various studies have shown that both drugs are effective in inhibiting DNA methylation, it has also become clear that their mode of action is not limited to DNA demethylation. Because azacytidine is a ribonucleoside, the primary(More)
The DNA methyltransferase inhibitors azacytidine and decitabine represent archetypal drugs for epigenetic cancer therapy. To characterize the demethylating activity of azacytidine and decitabine we treated colon cancer and leukemic cells with both drugs and used array-based DNA methylation analysis of more than 14,000 gene promoters. Additionally,(More)
Altered DNA methylation patterns represent an attractive mechanism for understanding the phenotypic changes associated with human aging. Several studies have described global and complex age-related methylation changes, but their structural and functional significance has remained largely unclear. We have used transcriptome sequencing to characterize(More)
Silencing of genes by hypermethylation contributes to cancer progression and has been shown to occur with increased frequency at specific genomic loci. However, the precise mechanisms underlying the establishment and maintenance of aberrant methylation marks are still elusive. The de novo DNA methyltransferase 3B (DNMT3B) has been suggested to play an(More)
During embryonic development, the lymphatic system emerges by transdifferentiation from the cardinal vein. Although lymphatic and blood vasculature share a close molecular and developmental relationship, they display distinct features and functions. However, even after terminal differentiation, transitions between blood endothelial cells (BEC) and lymphatic(More)
Epigenetic changes represent an attractive mechanism for understanding the phenotypic changes associated with human aging. Age-related changes in DNA methylation at the genome scale have been termed 'epigenetic drift', but the defining features of this phenomenon remain to be established. Human epidermis represents an excellent model for understanding(More)
  • 1