Learn More
Treatment of Duchenne muscular dystrophy (DMD) by replacing mutant dystrophin or restoring dystrophin-associated glycoprotein complex (DAG) has been clinically challenging. Instead, identifying and targeting muscle pathways deregulated in DMD will provide new therapeutic avenues. We report that the expression of nuclear receptor estrogen-related receptor-γ(More)
How type I skeletal muscle inherently maintains high oxidative and vascular capacity in the absence of exercise is unclear. We show that nuclear receptor ERRγ is highly expressed in type I muscle and, when transgenically expressed in anaerobic type II muscles (ERRGO mice), dually induces metabolic and vascular transformation in the absence of exercise.(More)
RATIONALE Oxidative myofibers in the skeletal muscles express high levels of angiogenic factors, have dense vasculature, and promptly revascularize during ischemia. Estrogen-related receptor-gamma (ERRγ) activates genes that govern metabolic and vascular features typical to oxidative myofibers. Therefore, ERRγ-dependent remodeling of the myofibers may(More)
Rapamycin at high doses (2-10 mg/kg body weight) inhibits mammalian target of rapamycin complex 1 (mTORC1) and protein synthesis in mice. In contrast, low doses of rapamycin (10 μg/kg) increase mTORC1 activity and protein synthesis in skeletal muscle. Similar changes are found with SLF (synthetic ligand for FKBP12, which does not inhibit mTORC1) and in mice(More)
Revascularization of ischemic skeletal muscle is governed by a balance between pro- and antiangiogenic factors in multiple cell types but particularly in myocytes and endothelial cells. Whereas the regulators of proangiogenic factors are well defined (e.g., hypoxia-inducible factor [HIF]), the transcriptional pathways encoding antiangiogenic factors remain(More)
Dissecting exercise-mimicking pathways that can replicate the benefits of exercise in obesity and diabetes may lead to promising treatments for metabolic disorders. Muscle estrogen-related receptor gamma (ERRγ) is induced by exercise, and when over-expressed in the skeletal muscle mimics exercise by stimulating glycolytic-to-oxidative myofiber switch,(More)
Aryl Hydrocarbon Receptor Nuclear Translocator/ hypoxia-inducible factor 1 beta (ARNT/ HIF1β), a member of bHLH-PAS family of transcriptional factors, plays a critical role in metabolic homeostasis, insulin resistance and glucose intolerance. The contributions of ARNT in pancreas, liver and adipose tissue to energy balance through gene regulation have been(More)
Rationale: Oxidative myofibers in the skeletal muscles express high levels of angiogenic factors, have dense vasculature, and promptly revascularize during ischemia. Estrogen-related receptor-gamma (ERR␥) activates genes that govern metabolic and vascular features typical to oxidative myofibers. Therefore, ERR␥-dependent remodeling of the myofibers may(More)
All right reserved: No part of this journal may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system without permission in writing. organization at the University of Texas at Austin and its views do not necessarily reflect the views of the(More)
  • 1