Saber Naserifar

  • Citations Per Year
Learn More
First-principles-based force fields prepared from large quantum mechanical data sets are now the norm in predictive molecular dynamics simulations for complex chemical processes, as opposed to force fields fitted solely from phenomenological data. In principle, the former allow improved accuracy and transferability over a wider range of molecular(More)
In part 1 of this series we developed the reactive force field ReaxFF, choosing the parameters adjusted to fit quantum mechanics description of prototypical reactions. In the present paper we use ReaxFF for reactive dynamics (RD) simulation of thermal decomposition of a siliconcontaining polymer, hydridopolycarbosilane (HPCS) over a wide range of(More)
We study the possibility of using polymer composites made of a polymer and boron nitride nanotubes (BNNTs) as a new type of membranes for gas separation. The polymer used is amorphous poly(ether imide) (PEI), and zigzag BNNTs are used to generate the composites with the PEI. The solubilities and self-diffusivities of CO2 and CH4 in the PEI and its(More)
Klapötke and co-workers recently designed two new materials, 2,4,6-triamino-1,3,5-triazine-1,3,5-trioxide (MTO) and 2,4,6-trinitro-1,3,5-triazine-1,3,5-trioxide (MTO3N), envisioned as candidates for green highenergy materials. However, all attempts at synthesis have failed. In order to validate the expected properties for these systems and to determine why(More)
2,4,6-Triamino-1,3,5-triazine-1,3,5-trioxide (MTO) and 2,4,6-trinitro-1,3,5-triazine-1,3,5-trioxide (MTO3N) were suggested by Klapötke et al. as candidates for green high energy density materials (HEDM), but a successful synthesis has not yet been reported. In order to predict the properties of these systems, we used quantum mechanics (PBE flavor of density(More)
Progress has recently been made in developing reactive force fields to describe chemical reactions in systems too large for quantum mechanical (QM) methods. In particular, ReaxFF, a force field with parameters that are obtained solely from fitting QM reaction data, has been used to predict structures and properties of many materials. Important applications(More)
The atomistic model of amorphous silicon-carbide membrane that was developed in Parts I and II of this series is utilized in nonequilibrium molecular dynamics (MD) simulations to study transport and separation of equimolar gaseous mixtures H2/CO2 and H2/CH4 in the membrane at high temperatures. We simulated membranes with up to about 39 nm in thickness,(More)
A broad class of important materials, such as carbon molecular sieves, silicon carbide (SiC), and silicon nitride, are fabricated by temperature-controlled pyrolysis of preceramic polymers. In particular, the fabrication of SiC membranes by pyrolysis of a polymer precursor that contains Si is quite attractive for separation of hydrogen from other gases. It(More)
Electrostatic interactions play a critical role in determining the properties, structures, and dynamics of chemical, biochemical, and material systems. These interactions are described well at the level of quantum mechanics (QM) but not so well for the various models used in force field simulations of these systems. We propose and validate a new general(More)
  • 1