Learn More
Predicting the folding of an RNA sequence, while allowing general pseudoknots (PK), consists in finding a minimal free-energy matching of its n positions. Assuming independently contributing base-pairs, the problem can be solved in Θ(n 3)-time using a variant of the maximal weighted matching. By contrast, the problem was previously proven NP-Hard in the(More)
Using complex roots of unity and the Fast Fourier Transform, we design a new thermodynamics-based algorithm, FFTbor, that computes the Boltzmann probability that secondary structures differ by [Formula: see text] base pairs from an arbitrary initial structure of a given RNA sequence. The algorithm, which runs in quartic time O(n(4)) and quadratic space(More)
Transmembrane β-barrel (TMB) proteins are a special class of transmembrane proteins which play several key roles in human body and diseases. Due to experimental difficulties, the number of TMB proteins with known structures is very small. Over the years, a number of learning-based methods have been introduced for recognition and structure prediction(More)
Transmembrane β-barrel proteins are a special class of transmembrane proteins which play several key roles in human body and diseases. Due to experimental difficulties, the number of transmembrane β-barrel proteins with known structures is very small. Over the years, a number of learning-based methods have been introduced for recognition and structure(More)
We describe the broad outline of a new thermodynamics-based algorithm, FFTbor, that uses the fast Fourier transform to perform polynomial interpolation to compute the Boltzmann probability that secondary structures differ by k base pairs from an arbitrary reference structure of a given RNA sequence. The algorithm, which runs in quartic time O(n 4) and(More)
  • 1