Learn More
5-[3-(4-Arylpiperazin-1-yl)propyl]-1H-benzimidazoles and 5-[2-(4-arylpiperazin-1-yl)ethoxy]-1H-benzimidazoles were synthesized and their affinity for the D1, D2 and 5-HT1A receptors examined. They expressed a rather high affinity for the D2 dopamine receptor. The main features of ligand-D2 receptor interactions revealed by docking analyses were: salt bridge(More)
Six active compounds, among previously synthesized and screened arylpiperazines, were selected and evaluated for the binding affinity to rat dopamine, serotonin and alpha(1) receptors. Two compounds with benztriazole group had a 5-HT(2A)/D(2) binding ratio characteristic for atypical neuroleptics (>1, pK(i) values). Compound 2,(More)
In this paper, we report the molecular modeling of the 5HT2A receptor and the molecular docking of arylpiperazine-like ligands. The focus of the research was on explaining the effects the ligand structure has on the binding properties of the 5HT2A receptor and on the key interactions between the ligands and the receptor-binding site. To see what the(More)
The docking of several 1-benzyl-4-arylpiperazines to the dopamine receptor (DAR) D2 was examined. The results demonstrated that the interaction of protonated N1 of the piperazine ring with Asp 86 (III.32) and edge-to-face interactions of the aromatic ring of the arylpiperazine part of the ligand with Phe 178 (VI.44), Trp 182 (VI.48) and Tyr 216 (VII.58) of(More)
We investigated the ability of 19 recently synthesized arylpiperazine compounds to protect human SH-SY5Y neuroblastoma cells from the neurotoxin 6-hydroxydopamine (6-OHDA). The compound with the most potent neuroprotective action was N-{3-[2-(4-phenyl-piperazin-1-yl)-ethyl]-phenyl}-picolinamide (6b), which reduced 6-OHDA-induced apoptotic death through(More)
Two new series of substituted arylpiperazines with heterocyclic 3-propoxy-benzimidazole or 3-propoxy-benzimidazole-2-thione groups were synthesized and their in vitro binding affinities for the D(2), 5-HT(1A), 5-HT(2A), and alpha(1)-adrenergic receptors determined. Among them, only two compounds with phenyl aryl-constituent (8a and 9a) showed 5-HT(2A)/D(2)(More)
The present study identifies xanthones gentiakochianin and gentiacaulein as the active principles responsible for the in vitro antiglioma action of ether and methanolic extracts of the plant Gentiana kochiana. Gentiakochianin and gentiacaulein induced cell cycle arrest in G(2)/M and G(0)/G(1) phases, respectively, in both C6 rat glioma and U251 human glioma(More)
In this publication we are describing synthesis, binding properties, and receptor docking of 4-halo-6-[2-(4-arylpiperazin-1-yl)ethyl]-1H-benzimidazoles, a new compounds with potential antipsychotics properties. Affinity towards the dopamine D(1)-like and D(2)-like, and serotonin 5-HT(1A) receptors was evaluated using the radioligand binding assays. All(More)
Clinical properties of atypical antipsychotics are based on their interaction with D(2) dopamine receptor and serotonin 5-HT(1A) and 5-HT(2A) receptors. As a part of our research program on new antipsychotics, we synthesized various derivatives of 1-cinnamyl-4-(2-methoxyphenyl)piperazines, and evaluated their affinities for D(2), 5-HT(1A), 5-HT(2A), and(More)
Interest in structure-based G-protein-coupled receptor (GPCR) ligand discovery is huge, given that almost 30 % of all approved drugs belong to this category of active compounds. The GPCR family includes the dopamine receptor subtype D2 (D2DR), but unfortunately--as is true of most GPCRs--no experimental structures are available for these receptors. In this(More)