Learn More
We investigated the ability of 19 recently synthesized arylpiperazine compounds to protect human SH-SY5Y neuroblastoma cells from the neurotoxin 6-hydroxydopamine (6-OHDA). The compound with the most potent neuroprotective action was N-{3-[2-(4-phenyl-piperazin-1-yl)-ethyl]-phenyl}-picolinamide (6b), which reduced 6-OHDA-induced apoptotic death through(More)
Six active compounds, among previously synthesized and screened arylpiperazines, were selected and evaluated for the binding affinity to rat dopamine, serotonin and alpha(1) receptors. Two compounds with benztriazole group had a 5-HT(2A)/D(2) binding ratio characteristic for atypical neuroleptics (>1, pK(i) values). Compound 2,(More)
The crystal structures of the D3 dopamine receptor and several other G-protein coupled receptors (GPCRs) were published in recent times. Those 3D structures are used by us and other scientists as a template for the homology modeling and ligand docking analysis of related GPCRs. Our main scientific interest lies in the field of pharmacologically active(More)
Arylpiperazine-based dopaminergic/serotonergic ligands exert neuroprotective activity. We examined the effect of arylpiperazine D2 /5-HT1A ligands, N-{4-[2-(4-phenyl-piperazin-1-yl)-ethyl}-phenyl]-picolinamide (6a) and N-{3-[2-(4-phenyl-piperazin-1-yl)-ethyl]-phenyl}-picolinamide (6b), in experimental autoimmune encephalomyelitis (EAE), a model of(More)
Research on dopamine (DA) and its receptors, and in particular the D2 receptor subclass, has been an intriguing and fast developing scientific field in the past 35 years. Methods of medicinal chemistry, molecular and structural biology as well as computational chemistry were used in the studies of DA receptors (DRs). Early attempts to describe DRs were(More)
Interest in structure-based G-protein-coupled receptor (GPCR) ligand discovery is huge, given that almost 30 % of all approved drugs belong to this category of active compounds. The GPCR family includes the dopamine receptor subtype D2 (D2DR), but unfortunately--as is true of most GPCRs--no experimental structures are available for these receptors. In this(More)
The ratio of affinities toward the dopamine D₂ and the 5-hydroxytryptamine 5-HT(1A) receptors is one of the important parameters that determine the efficiency of antipsychotic drugs. Here, we present the synthesis of ortho-, meta-, and para-N-{[2-(4-phenyl-piperazin-1-yl)-ethyl]-phenyl}-arylamides and their structure-activity relationship studies on(More)
It is suggested that the ratio of dopamine D(2) to 5-hydroxytryptamine 5-HT(1A) activity is an important parameter that determines the efficiency of antipsychotic drugs. Here we present the synthesis of N-{[2-(4-phenyl-piperazin-1-yl)-ethyl]-phenyl}-2-aryl-2-yl-acetamides and 1-{[2-(4-phenyl-piperazin-1-yl)-ethyl]-phenyl}-3-aryl-2-yl-ureas and their(More)
Molecular modelling studies were undertaken in order to identify key interactions of selected ligands with α 1A adrenergic receptor, responsible for their binding and presumably receptor activation. The previously made model of α 1A adrenergic receptor was optimized by molecular dynamics and different arylpiperazine ligands were docked. The results show a(More)
Clinical properties of atypical antipsychotics are based on their interaction with D(2) dopamine receptor and serotonin 5-HT(1A) and 5-HT(2A) receptors. As a part of our research program on new antipsychotics, we synthesized various derivatives of 1-cinnamyl-4-(2-methoxyphenyl)piperazines, and evaluated their affinities for D(2), 5-HT(1A), 5-HT(2A), and(More)