• Publications
  • Influence
GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral.
TLDR
The association of GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ-ray bursts. Expand
GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence.
TLDR
This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity. Expand
Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A
On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the FermiExpand
Advanced LIGO
The Advanced LIGO gravitational wave detectors are second-generation instruments designed and built for the two LIGO observatories in Hanford, WA and Livingston, LA, USA. The two instruments areExpand
GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2.
TLDR
The magnitude of modifications to the gravitational-wave dispersion relation is constrain, the graviton mass is bound to m_{g}≤7.7×10^{-23}  eV/c^{2} and null tests of general relativity are performed, finding that GW170104 is consistent with general relativity. Expand
Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors
We present an up-to-date, comprehensive summary of the rates for all types of compact binary coalescence sources detectable by the initial and advanced versions of the ground-based gravitational-waveExpand
GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs
We present the results from three gravitational-wave searches for coalescing compact binaries with component masses above 1$\mathrm{M}_\odot$ during the first and second observing runs of theExpand
ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914
The discovery of the gravitational-wave source GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black-hole systems that inspiral andExpand
GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence.
TLDR
For the first time, the nature of gravitational-wave polarizations from the antenna response of the LIGO-Virgo network is tested, thus enabling a new class of phenomenological tests of gravity. Expand
Binary Black Hole Mergers in the First Advanced LIGO Observing Run
The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw the first detections of gravitational waves from binary black hole mergers. In this paperExpand
...
1
2
3
4
5
...