• Publications
  • Influence
Rational Homotopy Theory
Sullivan Model and Rationalization of a Non-Simply Connected Space Homotopy Lie Algebra of a Space and Fundamental Group of the Rationalization, Model of a Fibration Holonomy Operation in a FibrationExpand
  • 553
  • 76
  • PDF
Obstructions to homotopy equivalences
Abstract An obstruction theory is developed to decide when an isomorphism of rational cohomology can be realized by a rational homotopy equivalence (either between rationally nilpotent spaces, orExpand
  • 197
  • 30
  • PDF
Connections, curvature and cohomology
  • 590
  • 19
Rational L-s Category and its Applications
Let S be a 1-connected CW-complex of finite type and put cat0(S) = Lusternik-Schnirelmann category of the localization SQ. This invariant is char- acterized in terms of the minimal model of S. It isExpand
  • 162
  • 19
Lectures on minimal models
© Mémoires de la S. M. F., 1983, tous droits réservés. L’accès aux archives de la revue « Mémoires de la S. M. F. » (http://smf. emath.fr/Publications/Memoires/Presentation.html) implique l’accordExpand
  • 208
  • 14
  • PDF
Finiteness in the minimal models of Sullivan
Let X be a 1-connected topological space such that the vector spaces I7I*(X) 0 Q and H*(X; Q) are finite dimensional. Then H*(X; Q) satisfies Poincare duality. Set Xr, = E(I)Pdim rlp(X) 0 Q and X, =Expand
  • 138
  • 14
  • PDF
Lusternik-Schnirelmann category
A subspace Z of a topological space X is contractible in X if the inclusion i : Z → X is homotopic to a constant map Z → x 0.
  • 101
  • 14
The homotopy lie algebra for finite complexes
© Publications mathématiques de l’I.H.É.S., 1982, tous droits réservés. L’accès aux archives de la revue « Publications mathématiques de l’I.H.É.S. » (http://Expand
  • 49
  • 5
  • PDF
...
1
2
3
4
5
...