Dynamic Motion Planning for Mobile Robots Using Potential Field Method
A new potential field method for motion planning of mobile robots in a dynamic environment where the target and the obstacles are moving is proposed and the problem of local minima is discussed.
Direct adaptive NN control of a class of nonlinear systems
In this paper, direct adaptive neural-network (NN) control is presented for a class of affine nonlinear systems in the strict-feedback form with unknown nonlinearities. By utilizing a special…
Adaptive Neural Network Control of Robotic Manipulators
- S. Ge, Tong-heng Lee, C. Harris
- Computer ScienceWorld Scientific Series in Robotics and…
- 1 February 1999
The text has been tailored to give a comprehensive study of robot dynamics, present structured network models for robots, and provide systematic approaches for neural network based adaptive controller design for rigid robots, flexible joint Robots, and robots in constraint motion.
Adaptive Neural Control for Output Feedback Nonlinear Systems Using a Barrier Lyapunov Function
- B. Ren, S. Ge, K. P. Tee, Tong-heng Lee
- MathematicsIEEE Transactions on Neural Networks
- 1 August 2010
A barrier Lyapunov function (BLF) is introduced to address two open and challenging problems in the neuro-control area: for any initial compact set, how to determine a priori the compact superset on which NN approximation is valid; and how to ensure that the arguments of the unknown functions remain within the specified compact supersets.
Adaptive neural control of uncertain MIMO nonlinear systems
Adapt neural control schemes are proposed for two classes of uncertain multi-input/multi-output (MIMO) nonlinear systems in block-triangular forms that avoid the controller singularity problem completely without using projection algorithms.
Stable Adaptive Neural Network Control
- S. Ge, C. Hang, Tong-heng Lee, Tao Zhang
- EngineeringThe Springer International Series on Asian…
- 30 November 2001
While neural network control has been successfully applied in various practical applications, many important issues, such as stability, robustness, and performance, have not been extensively…
Adaptive neural network control for strict-feedback nonlinear systems using backstepping design
- T. Zhang, S. Ge, C. Hang
- Mathematics, EngineeringProceedings of the American Control Conference…
- 2 June 1999
A smooth and singularity-free adaptive controller is designed for a first-order plant and an extension is made to high-order nonlinear systems using neural network approximation and adaptive backstepping techniques, guaranteeing the uniform ultimate boundedness of the closed-loop adaptive systems.
An ISS-modular approach for adaptive neural control of pure-feedback systems
- Cong Wang, D. Hill, S. Ge, Guanrong Chen
- Mathematicsat - Automatisierungstechnik
- 1 May 2006
...
...