Share This Author
Entropic CLT and phase transition in high-dimensional Wishart matrices
- Sébastien Bubeck, S. Ganguly
- Computer Science, MathematicsArXiv
- 10 September 2015
TLDR
Upper tails and independence polynomials in random graphs
- B. Bhattacharya, S. Ganguly, Eyal Lubetzky, Yufei Zhao
- Mathematics
- 15 July 2015
Recovery and Rigidity in a Regular Stochastic Block Model
- Gerandy Brito, Ioana Dumitriu, S. Ganguly, C. Hoffman, L. Tran
- Computer ScienceSODA
- 3 July 2015
TLDR
Consistent nonparametric estimation for heavy-tailed sparse graphs
- C. Borgs, J. Chayes, Henry Cohn, S. Ganguly
- Computer Science, MathematicsThe Annals of Statistics
- 26 August 2015
TLDR
Upper Tails for Edge Eigenvalues of Random Graphs
- B. Bhattacharya, S. Ganguly
- MathematicsSIAM J. Discret. Math.
- 19 November 2018
In this note we prove a precise large deviation principle for the largest and second largest eigenvalues of a sparse Erd\H{o}s-R\'enyi graph. Our arguments rely on various recent breakthroughs in the…
On Non-localization of Eigenvectors of High Girth Graphs
- S. Ganguly, N. Srivastava
- Mathematics, Computer ScienceInternational Mathematics Research Notices
- 21 March 2018
TLDR
Fractal geometry of Airy$_{2}$ processes coupled via the Airy sheet
- Riddhipratim Basu, S. Ganguly, A. Hammond
- Mathematics
- 3 April 2019
In last passage percolation models lying in the Kardar-Parisi-Zhang universality class, maximizing paths that travel over distances of order $n$ accrue energy that fluctuates on scale $n^{1/3}$; and…
Upper Tail Large Deviations for Arithmetic Progressions in a Random Set
- B. Bhattacharya, S. Ganguly, X. Shao, Yufei Zhao
- Mathematics
- 10 May 2016
Let $X_k$ denote the number of $k$-term arithmetic progressions in a random subset of $\mathbb{Z}/N\mathbb{Z}$ or $\{1, \dots, N\}$ where every element is included independently with probability $p$.…
High-girth near-Ramanujan graphs with localized eigenvectors
- N. Alon, S. Ganguly, N. Srivastava
- MathematicsIsrael Journal of Mathematics
- 10 August 2019
We show that for every prime $d$ and $\alpha\in (0,1/6)$, there is an infinite sequence of $(d+1)$-regular graphs $G=(V,E)$ with girth at least $2\alpha \log_{d}(|V|)(1-o_d(1))$, second adjacency…
A complete characterization of the evolution of RC4 pseudo random generation algorithm
- Riddhipratim Basu, S. Ganguly, S. Maitra, G. Paul
- Computer Science, MathematicsJ. Math. Cryptol.
- 1 October 2008
TLDR
...
...