Learn More
In some subjects with genetic and endocrine evidence of androgen resistance, no defect is demonstrable in the binding of androgen to its receptor in cultured genital skin fibroblasts. We have defined the molecular defect in the androgen receptor in four unrelated subjects in this category (termed receptor positive) with the phenotype of compete or(More)
Mutations in the androgen receptor gene cause phenotypic abnormalities of male sexual development that range from a female phenotype (complete testicular feminization) to that of undervirilized or infertile men. Using the tools of molecular biology, we have analyzed androgen receptor gene mutations in 31 unrelated subjects with androgen resistance(More)
We have analyzed the nucleotide sequence of the androgen receptor from 22 unrelated subjects with substitution mutations of the hormone-binding domain. Eleven had the phenotype of complete testicular feminization, four had incomplete testicular feminization, and seven had Reifenstein syndrome. The underlying functional defect in cultured skin fibroblasts(More)
We have characterized the molecular defect causing androgen resistance in two 46,XY siblings with complete testicular feminization. Although binding studies in genital skin fibroblasts showed a reduced Bmax, an increased dissociation rate of ligand, and an 8S peak of dihydrotestosterone binding on sucrose density gradient centrifugation, no immunoreactive(More)
We have investigated the basis of androgen resistance in seven unrelated individuals with complete testicular feminization or Reifenstein syndrome caused by single amino acid substitutions in the hormone-binding domain of the androgen receptor. Monolayer-binding assays of cultured genital skin fibroblasts demonstrated absent ligand binding, qualitative(More)
Individuals with androgen resistance encompass a spectrum of phenotypic abnormalities ranging from complete testicular feminization to undervirilized men. Such subjects have been classified according to the hormone-binding characteristics in genital skin fibroblasts and on the basis of the mutation in the androgen receptor (AR) gene. Antibodies to the(More)
Analysis of the nucleotide sequence of the coding segment of the androgen receptor gene in a patient (N105) with the receptor-negative form of complete testicular feminization has revealed a single substitution (CGC----TGC) at nucleotide 2476. This alteration results in the conversion of an arginine at amino acid 772 to a cysteine. Introduction of this(More)
Androgen resistance is associated with a wide range of quantitative and qualitative defects in the androgen receptor. However, fibroblast cultures from approximately 10% of patients with the clinical, endocrine, and genetic features characteristic of androgen resistance express normal quantities of apparently normal androgen receptor in cultured genital(More)
The actions of androgens, principally testosterone and 5alpha-dihydrotestosterone, are mediated by a specific receptor protein, the androgen receptor (AR), which is encoded by a single-copy gene located on the human X-chromosome. This receptor protein is a prototypical member of the nuclear receptor family and modulates a range of processes during(More)
We have expressed fusion proteins encoding defined segments of the coding segment of the human androgen receptor (hAR) in Escherichia coli using the pGEX-2T expression vector. Large quantities of fusion proteins containing glutathione-S-transferase (GST) linked to the amino or carboxy terminal region of the receptor and a fusion protein containing the(More)