Learn More
MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) damages dopaminergic neurons as seen in Parkinson disease. Here we show that after administration of MPTP to mice, there was a robust gliosis in the substantia nigra pars compacta associated with significant upregulation of inducible nitric oxide synthase (iNOS). These changes preceded or paralleled(More)
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) damages dopaminergic neurons in the substantia nigra pars compacta (SNpc) as seen in Parkinson's disease. Here, we show that the pro-apoptotic protein Bax is highly expressed in the SNpc and that its ablation attenuates SNpc developmental neuronal apoptosis. In adult mice, there is an up-regulation of Bax(More)
Mutations in copper/zinc superoxide dismutase (SOD1) are associated with a familial form of amyotrophic lateral sclerosis (ALS), and their expression in transgenic mice produces an ALS-like syndrome. Here we show that, during the course of the disease, the spinal cord of transgenic mice expressing mutant SOD1 (mSOD1) is the site not only of a progressive(More)
Mutations in alpha-synuclein cause a form of familial Parkinson's disease (PD), and wild-type alpha-synuclein is a major component of the intraneuronal inclusions called Lewy bodies, a pathological hallmark of PD. These observations suggest a pathogenic role for alpha-synuclein in PD. Thus far, however, little is known about the importance of(More)
Structural and functional alterations of alpha-synuclein is a presumed culprit in the demise of dopaminergic neurons in Parkinson's disease (PD). Alpha-synuclein mutations are found in familial but not in sporadic PD, raising the hypothesis that effects similar to those of familial PD-linked alpha-synuclein mutations may be achieved by oxidative(More)
Molecular mechanisms of apoptosis may participate in motor neuron degeneration produced by mutant copper/zinc superoxide dismutase (mSOD1), the only proven cause of amyotrophic lateral sclerosis (ALS). Consistent with this, herein we show that the spinal cord of transgenic mSOD1 mice is the site of the sequential activation of caspase-1 and caspase-3.(More)
It has been proposed that mutations in copper/zinc-superoxide dismutase (SOD1), the only proven cause of amyotrophic lateral sclerosis (ALS), induce the disease by a toxic property that promotes apoptosis. Consistent with this, we have demonstrated that overexpression of Bcl-2, a protein that inhibits apoptosis, attenuates neurodegeneration produced by the(More)
  • 1