Learn More
We demonstrate the shortest transistor channel length (17 nm) fabricated on a vapor-liquid-solid (VLS) grown silicon nanowire (NW) by a controlled reaction with Ni leads on an in situ transmission electron microscope (TEM) heating stage at a moderate temperature of 400 °C. NiSi(2) is the leading phase, and the silicide-silicon interface is an atomically(More)
We report the fabrication of arrays of single and multiple out-of-plane nanowire devices on a single substrate, an important step for the fabrication of novel three-dimensional devices and the integration of individually addressable nanowires onto current Si planar technology platforms. Vertical nanowire device fabrication can greatly increase device(More)
We present the first ultrafast time-resolved optical measurements, to the best of our knowledge, on ensembles of germanium nanowires. Vertically aligned germanium nanowires with mean diameters of 18 and 30 nm are grown on (111) silicon substrates through chemical vapor deposition. We optically inject electron-hole pairs into the nanowires and exploit the(More)
We report direct observation of an unexpected anisotropic swelling of Si nanowires during lithiation against either a solid electrolyte with a lithium counter-electrode or a liquid electrolyte with a LiCoO(2) counter-electrode. Such anisotropic expansion is attributed to the interfacial processes of accommodating large volumetric strains at the lithiation(More)
Using advanced in situ transmission electron microscopy, we show that the addition of a carbon coating combined with heavy doping leads to record-high charging rates in silicon nanowires. The carbon coating and phosphorus doping each resulted in a 2 to 3 orders of magnitude increase in electrical conductivity of the nanowires that, in turn, resulted in a 1(More)
Retaining the high energy density of rechargeable lithium ion batteries depends critically on the cycle stability of microstructures in electrode materials. We report the reversible formation of nanoporosity in individual germanium nanowires during lithiation-delithiation cycling by in situ transmission electron microscopy. Upon lithium insertion, the(More)
In lithium-ion batteries, the electrochemical reaction between the electrodes and lithium is a critical process that controls the capacity, cyclability and reliability of the battery. Despite intensive study, the atomistic mechanism of the electrochemical reactions occurring in these solid-state electrodes remains unclear. Here, we show that in situ(More)
From in situ transmission electron microscopy (TEM) observations, we present direct evidence of lithium-assisted welding between physically contacted silicon nanowires (SiNWs) induced by electrochemical lithiation and delithiation. This electrochemical weld between two SiNWs demonstrates facile transport of lithium ions and electrons across the interface.(More)
We present electronic transport measurements in individual Au-catalyst/Ge-nanowire interfaces demonstrating the presence of a Schottky barrier. Surprisingly, the small-bias conductance density increases with decreasing diameter. Theoretical calculations suggest that this effect arises because electron-hole recombination in the depletion region is the(More)
An important trend in materials science is the use of increasingly sophisticated methods to control composition and microstructure during processing. Near-surface modification by ion implantation and laser treatment is one of these new methods for tailoring material properties. Novel materials have been formed which are far from thermodynamic equilibrium(More)