Learn More
The receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin superfamily of cell surface molecules. As a pattern-recognition receptor capable of binding a diverse range of ligands, it is typically expressed at low levels under normal physiological conditions in the majority of tissues. In contrast, the lung exhibits high basal(More)
The application of in vitro models in drug permeability studies represents a useful screening tool for assessing the biopharmaceutical appropriateness of new chemical entities (NCEs). Of note, there remains an ever-increasing number of NCEs which exhibit poor aqueous solubility. However, in their classical configuration, both cellular and non-cellular in(More)
Peroxisome proliferator activated receptor γ (PPARγ) agonists are effective antifibrotic agents in a number of tissues. Effects of these agents on epithelial-mesenchymal transition (EMT) of primary alveolar epithelial cells (AEC) and potential mechanisms underlying effects on EMT have not been well delineated. We examined effects of troglitazone, a(More)
Organic cation/carnitine transporters (OCT/N) mediate uptake of positively charged molecules. Their role in lung epithelium; however, is not well understood. OCT/N expression and activity was studied in cell lines of human alveolar (A549), bronchial (16HBE14o- and Calu-3) and intestinal (Caco-2) epithelium. Protein levels were largely comparable for all(More)
The compatibility of fasted state simulated intestinal fluid (FaSSIF) in drug permeation studies employing the phospholipid vesicle-based permeation assay (PVPA) model was confirmed by a set of different integrity indicators. Neither calcein permeability nor electrical resistance were found significantly changed indicating unaffected barrier tightness.(More)
The generation of myofibroblasts via epithelial-mesenchymal transition (EMT), a process through which epithelial cells lose their polarity and become motile mesenchymal cells, is a proposed contributory factor in fibrosis of a number of organs. Currently, it remains unclear to what extent epithelia of the upper airways and large intestine are susceptible to(More)
The large number of drug candidates with poor dissolution characteristics seen in the past decade, has fostered interest in so-called "enabling formulations", i.e., formulations which shall make such drugs bio-available. Development of enabling formulations is currently being guided by the following (simplified) hypothesis: If a poorly soluble drug (BCS(More)
Fibrosis of the lung is characterized by the accumulation of myofibroblasts, a key mediator in the fibrogenic reaction. Cumulative evidence indicates that epithelial-mesenchymal transition (EMT), a process whereby epithelial cells become mesenchyme-like, is an important contributing source for the myofibroblast population. Underlying this phenotypical(More)
Using human airway epithelial cell lines (i.e. NCI-H441 and Calu-3) as well as human alveolar epithelial type I-like (ATI) cells in primary culture, we studied the contribution of the epithelial sodium channel δ-subunit (δ-ENaC) to transepithelial sodium transport in human lung in vitro. Endogenous δ-ENaC protein was present in all three cell types tested;(More)
The fate of inhaled salmon calcitonin (sCT) at the respiratory epithelial barrier was studied with particular emphasis on enzymatic degradation by trypsin, chymotrypsin, and neutrophil elastase. Degradation of sCT was assessed by HPLC in cell homogenate, supernatant and intact monolayers of human respiratory epithelial cells (hBEpC, Calu-3, 16HBE14o-, A549)(More)