#### Filter Results:

- Full text PDF available (3)

#### Publication Year

1981

2014

- This year (0)
- Last 5 years (2)
- Last 10 years (4)

#### Publication Type

#### Co-author

#### Journals and Conferences

Learn More

- S. R. Mohan, S. K. Neogy, R. Sridhar
- Math. Program.
- 1996

- S. R. Mohan, S. K. Neogy, A. Seth, N. K. Garg, S. Mittal
- J. Math. Model. Algorithms
- 2007

- Madhur Malik, S. R. Mohan
- Oper. Res. Lett.
- 2006

We introduce the notion of a complementary cone and a nondegenerate linear transformation and characterize the finiteness of the solution set of a linear complementarity problem over a closed convex cone in a finite dimensional real inner product space. In addition to the above, other geometrical properties of complementary cones have been explored. © 2005… (More)

- Dipanwita Haldar, A. K. Das, S. R. Mohan, O. Pal, R. S. Hooda, Manab Chakraborty
- 2011

In the present study evaluation of L-band SAR data at different polarization combinations in linear, circular as well as hybrid polarimetric imaging modes for crop and other landuse classifications has been carried out. Full-polarimetric radar data contains all the scattering information for any arbitrary polarization state, hence data of any combination of… (More)

- S. R. Mohan, S. K. Neogy, T. Parthasarathy, S. Sinha
- Math. Program.
- 1999

- S. R. Mohan, T. Parthasarathy, R. Sridhar
- Math. Oper. Res.
- 1994

- N. Eagambaram, S. R. Mohan
- Math. Program.
- 1989

In this paper we show that if A is a matrix in the class of matrices E(d), for a d ~ R", d > 0, introduced by Garcia, then the boundary of the set of q ~ R" for which the linear complementarity problem (q, A) has a solution is equal to the union of all strongly degenerate cones of (/, -A). This is a generalization of a similar result for copositive plus… (More)

- S. R. Mohan, R. Sridhar
- Math. Program.
- 1992

Given a real square matrix M of order n and a vector q c N" the problem of f inding nonnega t ive vectors w ~ R n and z c R" such that w M z = q, w ' z = 0, is k n o w n as the l inear complementar i ty problem and is denoted by (q, M). For any matr ix A let A.j denote its j t h co lumn and let I denote the identi ty matrix whose order is de te rmined from… (More)

- S. R. Mohan, S. K. Neogy, T. Parthasarathy
- IGTR
- 2001

- S. R. Mohan
- Math. Program.
- 1981